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Dedication
This	book	is	for	my	cofounder	and	our	two	startups.



Preface

Data	science	is	a	diverse	and	growing	field	encompassing	many	subfields	of	both	mathematics	and
computer	science.	Statistics,	linear	algebra,	databases,	machine	intelligence,	and	data	visualization	are
just	a	few	of	the	topics	that	merge	together	in	the	realm	of	a	data	scientist.	Technology	abounds	and	the
tools	to	practice	data	science	are	evolving	rapidly.	This	book	focuses	on	core,	fundamental	principles
backed	by	clear,	object-oriented	code	in	Java.	And	while	this	book	will	inspire	you	to	get	busy	right
away	practicing	the	craft	of	data	science,	it	is	my	hope	that	you	will	take	the	lead	in	building	the	next
generation	of	data	science	technology.



Who	Should	Read	This	Book
This	book	is	for	scientists	and	engineers	already	familiar	with	the	concepts	of	application	development
who	want	to	jump	headfirst	into	data	science.	The	topics	covered	here	will	walk	you	through	the	data
science	pipeline,	explaining	mathematical	theory	and	giving	code	examples	along	the	way.	This	book	is
the	perfect	jumping-off	point	into	much	deeper	waters.



Why	I	Wrote	This	Book
I	wrote	this	book	to	start	a	movement.	As	data	science	skyrockets	to	stardom,	fueled	by	R	and	Python,
very	few	practitioners	venture	into	the	world	of	Java.	Clearly,	the	tools	for	data	exploration	lend
themselves	to	the	interpretive	languages.	But	there	is	another	realm	of	the	engineering–science	hybrid
where	scale,	robustness,	and	convenience	must	merge.	Java	is	perhaps	the	one	language	that	can	do	it	all.
If	this	book	inspires	you,	I	hope	that	you	will	contribute	code	to	one	of	the	many	open	source	Java
projects	that	support	data	science.



A	Word	on	Data	Science	Today
Data	science	is	continually	changing,	not	only	in	scope	but	also	in	those	practicing	it.	Technology	moves
very	fast,	with	top	algorithms	moving	in	and	out	of	favor	in	a	matter	of	years	or	even	months.	Long-time
standardized	practices	are	discarded	for	practical	solutions.	And	the	barrier	to	success	is	regularly
hurdled	by	those	in	fields	previously	untouched	by	quantitative	science.	Already,	data	science	is	an
undergraduate	curriculum.	There	is	only	one	way	to	be	successful	in	the	future:	know	the	math,	know	the
code,	and	know	the	subject	matter.



Navigating	This	Book
This	book	is	a	logical	journey	through	a	data	science	pipeline.	In	Chapter	1,	the	many	methods	for	getting,
cleaning,	and	arranging	data	into	its	purest	form	are	examined,	as	are	basic	data	output	to	files	and
plotting.	Chapter	2	addresses	the	important	concept	of	viewing	our	data	as	a	matrix.	An	exhaustive	review
of	matrix	operations	is	presented.	Now	that	we	have	data	and	know	what	data	structure	it	should	take,
Chapter	3	introduces	the	basic	concepts	that	allow	us	to	test	the	origin	and	validity	of	our	data.	In	Chapter
4,	we	directly	use	the	concepts	from	Chapters	2	and	3	to	transform	our	data	into	stable	and	usable
numerical	values.	Chapter	5	contains	a	few	useful	supervised	and	unsupervised	learning	algorithms,	as
well	as	methods	for	evaluating	their	success.	Chapter	6	provides	a	quick	guide	to	getting	up	and	running
with	MapReduce	by	using	customized	components	suitable	for	data	science	algorithms.	A	few	useful
datasets	are	described	in	Appendix	A.



Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements	such	as
variable	or	function	names,	databases,	data	types,	environment	variables,	statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

CAUTION
This	element	indicates	a	warning	or	caution.



Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/oreillymedia/Data_Science_with_Java.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered	with	this	book,	you
may	use	it	in	your	programs	and	documentation.	You	do	not	need	to	contact	us	for	permission	unless
you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing	a	program	that	uses	several
chunks	of	code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-ROM	of
examples	from	O’Reilly	books	does	require	permission.	Answering	a	question	by	citing	this	book	and
quoting	example	code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,	author,	publisher,
and	ISBN.	For	example:	“Data	Science	with	Java	by	Michael	Brzustowicz	(O’Reilly).	Copyright	2017
Michael	Brzustowicz,	978-1-491-93411-1.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,	feel	free	to
contact	us	at	permissions@oreilly.com.

https://github.com/oreillymedia/Data_Science_with_Java
mailto:permissions@oreilly.com
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Please	address	comments	and	questions	concerning	this	book	to	the	publisher:
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Chapter	1.	Data	I/O

Events	happen	all	around	us,	continuously.	Occasionally,	we	make	a	record	of	a	discrete	event	at	a	certain
point	in	time	and	space.	We	can	then	define	data	as	a	collection	of	records	that	someone	(or	something)
took	the	time	to	write	down	or	present	in	any	format	imaginable.	As	data	scientists,	we	work	with	data	in
files,	databases,	web	services,	and	more.	Usually,	someone	has	gone	through	a	lot	of	trouble	to	define	a
schema	or	data	model	that	precisely	denotes	the	names,	types,	tolerances,	and	inter-relationships	of	all	the
variables.	However,	it	is	not	always	possible	to	enforce	a	schema	during	data	acquisition.	Real	data
(even	in	well-designed	databases)	often	has	missing	values,	misspellings,	incorrectly	formatted	types,
duplicate	representations	for	the	same	value,	and	the	worst:	several	variables	concatenated	into	one.
Although	you	are	probably	excited	to	implement	machine-learning	algorithms	and	create	stunning
graphics,	the	most	important	and	time-consuming	aspect	of	data	science	is	preparing	the	data	and	ensuring
its	integrity.



What	Is	Data,	Anyway?
Your	ultimate	goal	is	to	retrieve	data	from	its	source,	reduce	the	data	via	statistical	analysis	or	learning,
and	then	present	some	kind	of	knowledge	about	what	was	learned,	usually	in	the	form	of	a	graph.
However,	even	if	your	result	is	a	single	value	such	as	the	total	revenue,	most	engaged	user,	or	a	quality
factor,	you	still	follow	the	same	protocol:	input	data	→	reductive	analysis	→	output	data.

Considering	that	practical	data	science	is	driven	by	business	questions,	it	will	be	to	your	advantage	to
examine	this	protocol	from	right	to	left.	First,	formalize	the	question	you	are	trying	to	answer.	For
example,	do	you	require	a	list	of	top	users	by	region,	a	prediction	of	daily	revenue	for	the	next	week,	or	a
plot	of	the	distribution	of	similarities	between	items	in	inventory?	Next,	explore	the	chain	of	analyses	that
can	answer	your	questions.	Finally,	now	that	you	have	decided	on	your	approach,	exactly	what	data	will
you	need	to	accomplish	this	goal?	You	may	be	surprised	to	find	that	you	do	not	have	the	data	required.
Often	you	will	discover	that	a	much	simpler	set	of	analysis	tools	(than	you	originally	envisioned)	will	be
adequate	to	achieve	the	desired	output.

In	this	chapter,	you	will	explore	the	finer	details	of	reading	and	writing	data	from	a	variety	of	sources.	It
is	important	to	ask	yourself	what	data	model	is	required	for	any	subsequent	steps.	Perhaps	it	will	suffice
to	build	a	series	of	numerical	array	types	(e.g.,	double[][],	int[],	String[])	to	contain	the	data.	On
the	other	hand,	you	may	benefit	from	creating	a	container	class	to	hold	each	data	record,	and	then
populating	a	List	or	Map	with	those	objects.	Still	another	useful	data	model	is	to	formulate	each	record
as	a	set	of	key-value	pairs	in	a	JavaScript	Object	Notation	(JSON)	document.	The	decision	of	what	data
model	to	choose	rests	largely	on	the	input	requirements	of	the	subsequent	data-consuming	processes.



Data	Models
What	form	is	the	data	in,	and	what	form	do	you	need	to	transform	it	to	so	you	can	move	forward?	Suppose
somefile.txt	contained	rows	of	id,	year,	and	city	data.



Univariate	Arrays
The	simplest	data	model	for	this	particular	example	is	to	create	a	series	of	arrays	for	the	three	variables
id,	year,	and	city:

int[]	id	=	new	int[1024];

int[]	year	=	new	int[1024];

String[]	city	=	new	String[1024];

As	the	BufferedReader	loops	through	the	lines	of	the	file,	values	are	added	to	each	position	of	the	arrays
with	the	aid	of	an	incrementing	counter.	This	data	model	is	probably	adequate	for	clean	data	of	known
dimensions,	where	all	the	code	ends	up	in	one	executable	class.	It	would	be	fairly	straightforward	to	feed
this	data	into	any	number	of	statistical	analysis	or	learning	algorithms.	However,	you	will	probably	want
to	modularize	your	code	and	build	classes	and	subsequent	methods	suited	for	each	combination	of	data
source	and	data	model.	In	that	case,	shuttling	around	arrays	will	become	painful	when	you	have	to	alter
the	signatures	of	existing	methods	to	accommodate	new	arguments.



Multivariate	Arrays
Here	you	want	each	row	to	hold	all	the	data	for	a	record,	but	they	must	be	the	same	type!	So	in	our	case,
this	would	work	only	if	you	assigned	cities	a	numerical,	integer	value:

int[]	row1	=	{1,	2014,	1};

int[]	row2	=	{2,	2015,	1};

int[]	row3	=	{3,	2014,	2};

You	could	also	make	this	a	2D	array:

int[][]	data	=	{{1,	2014,	1},	{2,	2015,	1},	{3,	2014,	2}};

For	your	first	pass	through	a	dataset,	there	may	be	a	complicated	data	model	already,	or	just	a	mixture	of
text,	integers,	doubles,	and	date	times.	Ideally,	after	you	have	worked	out	what	will	go	into	a	statistical
analysis	or	learning	algorithm,	this	data	is	transformed	into	a	two-dimensional	array	of	doubles.
However,	it	takes	quite	a	bit	of	work	to	get	to	that	point.	On	the	one	hand,	it’s	convenient	to	be	handed	a
matrix	of	data	from	which	you	can	forge	ahead	with	machine	learning.	On	the	other,	you	may	not	know
what	compromises	were	made	or	what	mistakes	have	been	propagated,	undetected.



Data	Objects
Another	option	is	to	create	a	container	class	and	then	populate	a	collection	such	as	List	or	Map	with
those	containers.	The	advantages	are	that	it	keeps	all	the	values	of	a	particular	record	together,	and	adding
new	members	to	a	class	will	not	break	any	methods	that	take	the	class	as	an	argument.	The	data	in	the	file
somefile.txt	can	be	represented	by	the	following	class:

class	Record	{

				int	id;

				int	year;

				String	city;

}

Keep	the	class	as	lightweight	as	possible,	because	a	collection	(List	or	Map)	of	these	objects	will	add	up
for	a	large	dataset!	Any	methods	acting	on	Record	could	be	static	methods	ideally	in	their	own	class
titled	something	like	RecordUtils.

The	collection’s	structure,	List,	is	used	to	hold	all	the	Record	objects:

List<Record>	listOfRecords	=	new	ArrayList<>();

Looping	though	the	data	file	with	a	BufferReader,	each	line	can	then	be	parsed	and	its	contents	stored	in
a	new	Record	instance.	Each	new	Record	instance	is	then	added	to	List<Record>	listOfRecords.
Should	you	require	a	key	to	quickly	look	up	and	retrieve	an	individual	Record	instance,	use	a	Map:

Map<String,	Record>	mapOfRecords	=	new	HashMap<>();

The	key	to	each	record	should	be	a	unique	identifier	for	that	particular	record,	such	as	a	record	ID	or
URL.



Matrices	and	Vectors
Matrices	and	vectors	are	higher-level	data	structures	composed	of,	respectively,	two-	and	one-
dimensional	arrays.	Usually,	a	dataset	contains	multiple	columns	and	rows,	and	we	can	say	that	these
variables	form	a	two-dimensional	array	(or	matrix)	X	in	which	there	are	 	rows	and	 	columns.	We
choose	 	to	be	the	row	index,	and	 	to	be	the	column	index,	such	that	each	element	of	the	 	matrix
is	

When	we	put	values	into	a	data	structure	like	a	matrix,	we	can	gain	convenience.	In	many	situations,	we
will	be	performing	mathematical	operations	on	our	data.	A	matrix	instance	can	have	abstract	methods	for
performing	these	operations,	with	implementation	details	that	are	suited	for	the	task	at	hand.	We	will
explore	matrices	and	vectors	in	detail	in	Chapter	2.



JSON
JavaScript	Object	Notation	(JSON)	has	become	a	prevalent	form	of	representing	data.	In	general,	JSON
data	is	represented	by	simple	rules	at	json.org:	double	quotes!	No	trailing	commas!	A	JSON	object	has
outer	curly	braces	and	can	have	any	valid	set	of	key-value	pairs	separated	by	commas	(the	order	of
contents	is	not	guaranteed,	so	treat	it	as	a	HashMap	type):

{"city":"San	Francisco",	"year":	2020,	"id":	2,	"event_codes":[20,	22,	34,	19]}

A	JSON	array	has	outer	square	brackets	with	valid	JSON	contents	separated	by	commas	(the	order	of
array	contents	is	guaranteed,	so	treat	it	as	an	ArrayList	type):

[40,	50,	70,	"text",	{"city":"San	Francisco"}]

There	are	two	main	categories	you	will	find.	Some	data	files	contain	complete	JSON	objects	or	arrays.
These	are	usually	configuration	files.	However,	another	type	of	data	structure	that	is	common	is	a	text	file
of	independent	JSON	objects,	one	per	line.	Note	that	this	type	of	data	structure	(list	of	JSONs)	is
technically	not	a	JSON	object	or	array	because	there	are	no	closing	braces	or	commas	between	lines,	and
as	such,	trying	to	parse	the	whole	data	structure	as	one	JSON	object	(or	array)	will	fail.



Dealing	with	Real	Data
Real	data	is	messy,	incomplete,	incorrect,	and	sometimes	incoherent.	If	you	are	working	with	a	“perfect”
dataset,	it’s	because	someone	else	spent	a	great	deal	of	time	and	effort	in	getting	it	that	way.	It	is	also
possible	that	your	data	is,	in	fact,	not	perfect,	and	you	are	unwittingly	performing	analyses	on	junk	data.
The	only	way	to	be	sure	is	to	get	data	from	the	source	and	process	it	yourself.	This	way,	if	there	is	a
mistake,	you	know	who	to	blame.



Nulls
Null	values	appear	in	a	variety	of	forms.	If	the	data	is	being	passed	around	inside	Java,	it’s	entirely
possible	to	have	a	null.	If	you	are	parsing	strings	from	a	text	file,	a	null	value	may	be	represented	by	a
variety	of	the	literal	string	"null",	"NULL",	or	other	string	such	as	"na",	or	even	a	dot.	In	either	case	(a
null	type	or	null	literal),	we	want	to	keep	track	of	these:

private	boolean	checkNull(String	value)	{

				return	value	==	null	||	"null".equalsIgnoreCase(value);

}

Often	a	null	value	has	been	recorded	as	a	blank	space	or	series	of	blank	spaces.	Although	this	is
sometimes	a	nuisance,	it	may	serve	a	purpose,	because	encoding	a	0	is	not	always	appropriate	to
represent	the	concept	that	the	data	point	does	not	exist.	For	example,	if	we	were	tracking	binary	variables,
0	and	1,	and	came	across	an	item	for	which	we	did	not	know	the	value,	then	wrongly	assigning	0	to	the
value	(and	writing	it	to	the	file)	would	incorrectly	assign	a	true	negative	value.	When	writing	a	null	value
to	a	text	file,	my	preference	is	for	a	zero-length	string.



Blank	Spaces
Blank	spaces	abound	in	real	data.	It	is	straightforward	to	check	for	an	empty	string	by	using	the
String.isEmpty()	method.	However,	keep	in	mind	that	a	string	of	blank	spaces	(even	one	blank	space)
is	not	empty!	First,	we	use	the	String.trim()	method	to	remove	any	leading	or	trailing	spaces	around
the	input	value	and	then	check	its	length.	String.isEmpty()	returns	true	only	if	the	string	has	zero
length:

private	boolean	checkBlank(String	value)	{

				return	value.trim().isEmpty();

}



Parse	Errors
Once	we	know	the	string	value	is	neither	null	nor	blank,	we	parse	it	into	the	type	we	require.	We’ll	leave
the	parsing	of	strings	to	strings	out	of	this,	because	there	is	nothing	to	parse!

When	dealing	with	numeric	types,	it	is	unwise	to	cast	strings	to	a	primitive	type	such	as	double,	int,	or
long.	It	is	recommended	to	use	the	object	wrapper	classes	such	as	Double,	Integer,	and	Long,	which
have	a	string-parsing	method	that	throws	a	NumberFormatException	should	something	go	wrong.	We	can
catch	that	exception	and	update	a	parsing	error	counter.	You	can	also	print	or	log	the	error:

try	{

				double	d	=	Double.parseDouble(value);

				//	handle	d

}	catch	(NumberFormatException	e)	{

				//	increment	parse	error	counter	etc.

}

Similarly,	date	times	formatted	as	a	string	can	be	parsed	by	the	OffsetDateTime.parse()	method;	the
DateTimeParseException	can	be	caught	and	logged	should	something	be	wrong	with	the	input	string:

try	{

				OffsetDateTime	odt	=	OffsetDateTime.parse(value);

				//	handle	odt

}	catch	(DateTimeParseException	e)	{

				//	increment	parse	error	counter	etc.

}



Outliers
Now	that	our	data	is	cleaned	and	parsed,	we	can	check	whether	the	value	is	acceptable	given	our
requirements.	If	we	were	expecting	a	value	of	either	0	or	1	and	we	get	a	2,	the	value	is	clearly	out	of
range	and	we	can	designate	this	data	point	as	an	outlier.	As	in	the	case	with	nulls	and	blanks,	we	can
perform	a	Boolean	test	on	the	value	to	determine	whether	it	is	within	an	acceptable	range	of	values.	This
is	good	for	numeric	types	as	well	as	strings	and	date	times.

In	the	case	of	checking	ranges	with	numeric	types,	we	need	to	know	the	minimum	and	maximum
acceptable	values	and	whether	they	are	inclusive	or	exclusive.	For	example,	if	we	set	minValue	=	1.0
and	minValueInclusive	=	true,	all	values	greater	than	or	equal	to	1.0	will	pass	the	test.	If	we	set
minValueInclusive	=	false,	only	values	greater	than	1.0	will	pass	the	test.	Here	is	the	code:

public	boolean	checkRange(double	value)	{

				boolean	minBit	=	(minValueInclusive)	?	value	>=	minValue	:	value	>	minValue;

				boolean	maxBit	=	(maxValueInclusive)	?	value	<=	maxValue	:	value	<	maxValue;

				return	minBit	&&	maxBit;

}

Similar	methods	can	be	written	for	integer	types.

We	can	also	check	whether	a	string	value	is	in	an	acceptable	range	by	setting	an	enumeration	of	valid
strings.	This	can	be	done	by	creating	a	Set	instance	of	valid	strings	called,	for	example,	validItems,
where	the	Set.contains()	method	can	be	used	to	test	the	validity	of	an	input	value:

private	boolean	checkRange(String	value)	{

				return	validItems.contains(value);

}

For	DateTime	objects,	we	can	check	whether	a	date	is	after	a	minimum	date	and	before	a	maximum	date.
In	this	case,	we	define	the	min	and	max	as	OffsetDateTime	objects	and	then	test	whether	the	input	date
time	is	between	the	min	and	max.	Note	that	OffsetDateTime.isBefore()	and
OffsetDateTime.isAfter()	are	exclusive.	If	the	input	date	time	is	equal	to	either	the	min	or	max,	the
test	will	fail.	Here	is	the	code:

private	boolean	checkRange(OffsetDateTime	odt)	{

				return	odt.isAfter(minDate)	&&	odt.isBefore(maxDate);

}



Managing	Data	Files
This	is	where	the	art	of	data	science	begins!	How	you	choose	to	build	a	dataset	is	not	only	a	matter	of
efficiency,	but	also	one	of	flexibility.	There	are	many	options	for	reading	and	writing	files.	As	a	bare
minimum,	the	entire	contents	of	the	file	can	be	read	into	a	String	type	by	using	a	FileReader	instance,
and	then	the	String	can	be	parsed	into	the	data	model.	For	large	files,	I/O	errors	are	avoided	by	using	a
Buffered Reader	to	read	each	line	of	the	file	separately.	The	strategy	presented	here	is	to	parse	each	line
as	it	is	read,	keeping	only	the	values	that	are	required	and	populating	a	data	structure	with	those	records.
If	there	are	1,000	variables	per	line,	and	only	three	are	required,	there	is	no	need	to	keep	all	of	them.
Likewise,	if	the	data	in	a	particular	line	does	not	meet	certain	criteria,	there	is	also	no	need	to	keep	it.	For
large	datasets,	this	conserves	resources	compared	to	reading	all	the	lines	into	a	string	array	(String[])
and	parsing	it	later.	The	more	consideration	you	put	into	this	step	of	managing	data	files,	the	better	off	you
will	be.	Every	step	you	take	afterward,	whether	it’s	statistics,	learning,	or	plotting,	will	rely	on	your
decisions	when	building	a	dataset.	The	old	adage	of	“garbage	in,	garbage	out”	definitely	applies.



Understanding	File	Contents	First
Data	files	come	in	a	bewildering	array	of	configurations,	with	some	undesirable	features	as	a	result.
Recall	that	ASCII	files	are	just	a	collection	of	ASCII	characters	printed	to	each	line.	There	is	no
guarantee	on	the	format	or	precision	of	a	number,	the	use	of	single	or	double	quotes,	or	the	inclusion	(or
exclusion)	of	numerous	space,	null,	and	newline	characters.	In	short,	despite	your	assumptions	as	to	the
contents	of	the	file,	there	can	be	almost	anything	on	each	line.	Before	reading	in	the	file	with	Java,	take	a
look	at	it	in	a	text	editor	or	with	the	command	line.	Note	the	number,	position,	and	type	of	each	item	in	a
line.	Pay	close	attention	to	how	missing	or	null	values	are	represented.	Also	note	the	type	of	delimiter	and
any	headers	describing	the	data.	If	the	file	is	small	enough,	you	can	scan	it	visually	for	missing	or
incorrectly	formatted	lines.	For	example,	say	we	look	at	the	file	somefile.txt	with	the	Unix	command	less
in	a	bash	shell:

bash$	less	somefile.txt

"id","year","city"

1,2015,"San	Francisco"

2,2014,"New	York"

3,2012,"Los	Angeles"

...

We	see	a	comma-separated	values	(CSV)	dataset	with	the	columns	id,	year,	and	city.	We	can	quickly
check	the	number	of	lines	in	the	file:

bash$	wc	-l	somefile.txt

1025

This	indicates	that	there	are	1,024	lines	of	data	plus	one	line	more	for	the	header.	Other	formats	are
possible,	such	as	tab-separated	values	(TSV),	a	“big	string”	format	in	which	all	the	values	are
concatenated	together,	and	JSON.	For	large	files,	you	may	want	to	take	the	first	100	or	so	lines	and
redirect	them	to	an	abridged	file	for	purposes	of	developing	your	application:

bash$	head	-100	filename	>	new_filename

In	some	cases,	the	data	file	is	just	too	big	for	a	pair	of	eyes	to	scan	it	for	structure	or	errors.	Clearly,	you
would	have	trouble	examining	a	data	file	with	1,000	columns	of	data!	Likewise,	you	are	unlikely	to	find
an	error	in	formatting	by	scrolling	through	one	million	lines	of	data.	In	this	case	it	is	essential	that	you
have	an	existing	data	dictionary	that	describes	the	format	of	the	columns	and	the	data	types	(e.g.,	integer,
float,	text)	that	are	expected	for	each	column.	You	can	programmatically	check	each	line	of	data	as	you
parse	the	file	via	Java;	exceptions	can	be	thrown,	and,	perhaps,	the	entire	contents	of	the	offending	line
printed	out	so	you	can	examine	what	went	wrong.



Reading	from	a	Text	File
The	general	approach	for	reading	a	text	file	is	to	create	a	FileReader	instance	surrounded	by	a
BufferedReader	that	enables	reading	each	line.	Here,	FileReader	takes	the	argument	of	String
filename,	but	FileReader	can	also	take	a	File	object	as	its	argument.	The	File	object	is	useful	when
filenames	and	paths	are	dependent	on	the	operating	system.	This	is	the	generic	form	for	reading	files	line
by	line	with	a	Buffered Reader:

try(BufferedReader	br	=	new	BufferedReader(new	FileReader("somefile.txt"))	)	{

				String	columnNames	=	br.readline();	//	ONLY	do	this	if	it	exists

				String	line;

				while	((line	=	br.readLine())	!=	null)	{

								/*	parse	each	line	*/

								//	TODO

				}

}	catch	(Exception	e)	{

				System.err.println(e.getMessage());	//	or	log	error

}

We	can	do	the	exact	same	thing	if	the	file	exists	somewhere	remotely:

URL	url	=	new	URL("http://storage.example.com/public-data/somefile.txt");								

try(BufferedReader	br	=	new	BufferedReader(

				new	InputStreamReader(url.openStream()))	)	{

				String	columnNames	=	br.readline();	//	ONLY	do	this	if	it	exists

				String	line;

				while	((line	=	br.readLine())	!=	null)	{

								//	TODO	parse	each	line

				}

}	catch	(Exception	e)	{

				System.err.println(e.getMessage());	//	or	log	error

}

We	just	have	to	worry	about	how	to	parse	each	line.

Parsing	big	strings
Consider	a	file	in	which	each	row	is	a	“big	string”	of	concatenated	values,	and	any	substring	with	starting
and	stopping	positions	encodes	a	particular	variable:

0001201503

0002201401

0003201202

The	first	four	digits	are	the	id	number,	the	second	four	are	the	year,	and	the	last	two	are	the	city	code.
Keep	in	mind	that	each	line	can	be	thousands	of	characters	long,	and	the	position	of	character	substrings	is
critical.	It	is	typical	that	numbers	will	be	padded	with	zeros,	and	empty	spaces	may	be	present	for	null
values.	Note	that	periods	occurring	inside	a	float	(e.g.,	32.456)	count	as	a	space,	as	will	any	other
“strange”	character!	Usually,	text	strings	are	encoded	as	values.	For	example,	in	this	case,	New	York	=
01,	Los	Angeles	=	02,	and	San	Francisco	=	03.

In	this	case,	the	values	from	each	line	can	be	accessed	with	the	method	String.substring(int
beginIndex,	int	endIndex).	Note	that	the	substring	starts	at	begin Index	and	goes	up	to	(but	not
including)	endIndex:



/*	parse	each	line	*/

int	id	=	Integer.parseInt(line.substring(0,	4));

int	year	=	Integer.parseInt(line.substring(4,	8));

int	city	=	Integer.parseInt(line.substring(8,	10));

Parsing	delimited	strings
Considering	the	popularity	of	spreadsheets	and	database	dumps,	it	is	highly	likely	you	will	be	given	a
CSV	dataset	at	some	point.	Parsing	this	kind	of	file	could	not	be	easier!	Consider	the	data	in	our	example
formatted	as	a	CSV	file:

1,2015,"San	Francisco"

2,2014,"New	York"

3,2012,"Los	Angeles"

Then	all	we	need	to	do	is	parse	with	String.split(",")	and	utilize	String.trim()	to	remove	any
pesky	leading	or	trailing	whitespaces.	It	also	will	be	necessary	to	remove	any	quotes	around	strings	with
String.replace("\"",	""):

/*	parse	each	line	*/

String[]	s	=	line.split(",");	

int	id	=	Integer.parseInt(s[0].trim());

int	year	=	Integer.parseInt(s[1].trim());

String	city	=	s[2].trim().replace("\"",	"");

In	the	next	example,	the	data	in	somefile.txt	has	been	separated	by	tabs:

1								2015								"San	Francisco"

2								2014								"New	York"

3								2012								"Los	Angeles"

Splitting	tab-delimited	data	is	achieved	by	replacing	code	for	String.split(",")	in	the	preceding
example	with	this:

String[]	s	=	line.split("\t");

At	some	point,	you	will	undoubtedly	come	across	CSV	files	with	fields	that	contain	commas.	One
example	is	text	taken	from	a	user	blog.	Yet	another	example	occurs	when	denormalized	data	is	put	into	a
column	—	for	example,	“San	Francisco,	CA”	instead	of	having	separate	columns	for	city	and	state.	This
is	quite	tricky	to	parse	and	requires	regex.	Instead,	why	not	use	the	Apache	Commons	CSV	parser
library?

/*	parse	each	line	*/

CSVParser	parser	=	CSVParser.parse(line,	CSVFormat.RFC4180);

for(CSVRecord	cr	:	parser)	{

				int	id	=	cr.get(1);	//	columns	start	at	1	not	0	!!!

				int	year	=	cr.get(2);

				String	city	=	cr.get(3);

}

The	Apache	Commons	CSV	library	also	handles	common	formats	including	CSVFormat.EXCEL,
CSVFormat.MYSQL,	and	CSVFormat.TDF.

Parsing	JSON	strings



JSON	is	a	protocol	for	serializing	JavaScript	objects	and	can	be	extended	to	data	of	all	types.	This
compact,	easy-to-read	format	is	ubiquitous	in	Internet	data	APIs	(in	particular,	RESTful	services)	and	is
the	standard	format	for	many	NoSQL	solutions	such	as	MongoDB	and	CouchDB.	As	of	version	9.3,	the
PostgreSQL	database	offers	a	JSON	data	type	and	can	query	native	JSON	fields.	The	clear	advantage	is
human	readability;	the	structure	of	the	data	is	readily	visible,	and	with	“pretty	print,”	even	more	so.	In
terms	of	Java,	JSON	is	nothing	more	than	a	collection	of	HashMaps	and	ArrayLists,	in	any	nested
configuration	imaginable.	Each	line	of	the	data	from	the	prior	examples	can	be	formatted	as	a	JSON	string
by	placing	the	values	into	key-value	pairs;	strings	are	in	double	quotes	(not	single	quotes),	and	no	trailing
commas	are	allowed:

{"id":1,	"year":2015,	"city":"San	Francisco"}

{"id":2,	"year":2014,	"city":"New	York"}

{"id":3,	"year":2012,	"city":"Los	Angeles"}

Note	that	the	entire	file	itself	is	not	technically	a	JSON	object,	and	parsing	the	whole	file	as	such	will
fail.	To	be	valid	JSON	format,	each	line	would	need	to	be	separated	by	a	comma	and	then	the	entire	group
enclosed	with	square	brackets.	This	would	comprise	a	JSON	array.	However,	writing	this	kind	of
structure	would	be	inefficient	and	not	useful.	It	is	much	more	convenient	and	usable	as	is:	a	line-by-line
stack	of	JSON	objects	in	string	representation.	Note	that	the	JSON	parser	does	not	know	the	type	of	the
values	in	the	key-value	pairs.	So	get	the	String	representation	and	then	parse	it	to	its	primitive	type	by
using	the	boxed	methods.	It	is	straightforward	to	build	our	dataset	now,	using	org.simple.json:

/*	create	JSON	parser	outside	while	loop	*/

JSONParser	parser	=	new	JSONParser();

...

/*	create	an	object	by	casting	the	parsed	string	*/

JSONObject	obj	=	(JSONObject)	parser.parse(line);

int	id	=	Integer.parseInt(j.get("id").toString());

int	year	=	Integer.parseInt(j.get("year").toString());

String	city	=	j.get("city").toString();



Reading	from	a	JSON	File
This	section	covers	files	that	are	stringified	JSON	objects	or	arrays.	You	have	to	know	beforehand
whether	the	file	is	a	JSON	object	or	an	array.	If	you	look	at	the	file	with,	for	example,	ls	on	the	command
line,	you	can	tell	if	it	has	curly	braces	(object)	or	square	braces	(array):

{{"id":1,	"year":2015,	"city":"San	Francisco"},

	{"id":2,	"year":2014,	"city":"New	York"},

	{"id":3,	"year":2012,	"city":"Los	Angeles"}}

Then	you	use	the	Simple	JSON	library:

JSONParser	parser	=	new	JSONParser();

try{

				JSONObject	jObj	=	(JSONObject)	parser.parse(new	FileReader("data.json"));

				//	TODO	do	something	with	jObj

}	catch	(IOException|ParseException	e)	{

				System.err.println(e.getMessage());

}

And	if	it’s	an	array,

[{"id":1,	"year":2015,	"city":"San	Francisco"},

	{"id":2,	"year":2014,	"city":"New	York"},

	{"id":3,	"year":2012,	"city":"Los	Angeles"}]

then	you	can	parse	the	entire	JSON	array:

JSONParser	parser	=	new	JSONParser();

try{

				JSONArray	jArr	=	(JSONArray)	parser.parse(new	FileReader("data.json"));

				//	TODO	do	something	with	jObj

}	catch	(IOException|ParseException	e)	{

				System.err.println(e.getMessage());

}

WARNING
If	you	really	have	a	file	with	one	JSON	object	per	line,	the	file	is	not	technically	a	qualified	JSON	data	structure.	Refer	back	to
“Reading	from	a	Text	File”	where	we	read	text	files,	parsing	JSON	objects	one	line	at	a	time.



Reading	from	an	Image	File
When	using	images	as	input	for	learning,	we	need	to	convert	from	the	image	format	(e.g.,	PNG)	to	a	data
structure	that	is	appropriate,	such	as	a	matrix	or	vector.	There	are	several	points	to	consider	here.	First,
an	image	is	a	two-dimensional	array	with	coordinates,	{x1,	x2},	and	a	set	of	associated	color	or	intensity
values,	{y1…},	that	may	be	stored	as	a	single,	integer	value.	If	all	we	want	is	the	raw	value	stored	in	a
2D	integer	array	(labeled	data	here),	we	read	in	the	buffered	image	with	this:

BufferedImage	img	=	null;

try	{

				img	=	ImageIO.read(new	File("Image.png"));

				int	height	=	img.getHeight();

				int	width	=	img.getWidth();

				int[][]	data	=	new	int[height][width];

				for	(int	i	=	0;	i	<	height;	i++)	{

								for	(int	j	=	0;	j	<	width;	j++)	{

												int	rgb	=	img.getRGB(i,	j);	//	negative	integers

												data[i][j]	=	rgb;

								}

				}

}	catch	(IOException	e)	{

				//	handle	exception

}

We	may	want	to	convert	the	integer	into	its	RGB	(red,	green,	blue)	components	by	bit	shifting	the	integer:

int	blue	=	0x0000ff	&	rgb;

int	green	=	0x0000ff	&	(rgb	>>	8);

int	red	=	0x0000ff	&	(rgb	>>	16);

int	alpha	=	0x0000ff	&	(rgb	>>	24);

However,	we	can	get	this	information	natively	from	the	raster	with	this:

byte[]	pixels	=	((DataBufferByte)	img.getRaster().getDataBuffer()).getData();

for	(int	i	=	0;	i	<	pixels.length	/	3	;	i++)	{

				int	blue	=	Byte.toUnsignedInt(pixels[3*i]);

				int	green	=	Byte.toUnsignedInt(pixels[3*i+1]);

				int	red	=	Byte.toUnsignedInt(pixels[3*i+2]);

}

Color	may	not	be	important.	Perhaps	grayscale	is	really	all	that’s	needed:

//convert	rgb	to	grayscale	(0	to	1)	where	colors	are	on	a	scale	of	0	to	255

double	gray	=	(0.2126	*	red	+	0.7152	*	green	+	0.0722	*	blue)	/	255.0

Also,	in	some	cases	the	2D	representation	is	not	necessary.	We	convert	the	matrix	to	a	vector	by
concatenating	each	row	of	the	matrix	onto	the	new	vector	such	that	xn	=	x1,	x2,	...,	where	the	length	n	of
the	vector	is	m	×	p	of	the	matrix,	the	number	of	rows	times	the	number	of	columns.	In	the	well-known
MNIST	dataset	of	handwritten	images,	the	data	has	already	been	corrected	(centered	and	cropped)	and
then	converted	into	a	binary	format.	So	reading	in	that	data	requires	a	special	format	(see	Appendix	A),
but	it	is	already	in	vector	(1D)	as	opposed	to	matrix	(2D)	format.	Learning	techniques	on	the	MNIST
dataset	usually	involve	this	vectorized	format.



Writing	to	a	Text	File
Writing	data	to	files	has	a	general	form	of	using	the	FileWriter	class,	but	once	again	the	recommended
practice	is	to	use	the	BufferedWriter	to	avoid	any	I/O	errors.	The	general	concept	is	to	format	all	the
data	you	want	to	write	to	file	as	a	single	string.	For	the	three	variables	in	our	example,	we	can	do	this
manually	with	a	delimiter	of	choice	(either	a	comma	or	\t):

/*	for	each	instance	Record	record	*/

String	output	=	Integer.toString(record.id)	+	","	+	

Integer.toString(record.year)	+	","	+	record.city;

When	using	Java	8,	the	method	String.join(delimiter,	elements)	is	convenient!

/*	in	Java	8	*/

String	newString	=	String.join(",",	{"a",	"b",	"c"});

/*	or	feed	in	an	Iterator	*/

String	newString	=	String.join(",",	myList);

Otherwise,	you	can	instead	use	the	Apache	Commons	Lang	StringUtils.join(elements,
delimiter)	or	the	native	StringBuilder	class	in	a	loop:

/*	in	Java	7	*/

String[]	strings	=	{"a",	"b",	"c"};

/*	create	a	StringBuilder	and	add	the	first	member	*/

StringBuilder	sb;

sb.append(strings[0]);

/*	skip	the	first	string	since	we	already	have	it	*/

for(int	i	=	1;	i	<	strings.length,	i++){

				/*	choose	a	delimiter	here	...	could	also	be	a	\t	for	tabs	*/

				sb.append(",");

				sb.append(strings[i]);

}

String	newString	=	sb.toString();

Note	that	successively	using	myString	+=	myString_part	calls	the	StringBuilder	class,	so	you
might	as	well	use	StringBuilder	anyway	(or	not).	In	any	case,	the	strings	are	written	line	by	line.	Keep
in	mind	that	the	method	BufferedWriter.write(String)	does	not	write	a	new	line!	You	will	have	to
include	a	call	to	BufferedWriter.newLine()	if	you	would	like	each	data	record	to	be	on	its	own	line:

try(BufferedWriter	bw	=	new	BufferedWriter(new	FileWriter("somefile.txt"))	)	{

				for(String	s	:	myStringList){

								bw.write(s);

								/*	don't	forget	to	append	a	new	line!	*/

								bw.newLine();

				}

}	catch	(Exception	e)	{

				System.out.println(e.getMessage());

}

The	preceding	code	overwrites	all	existing	data	in	the	file	designated	by	filename.	In	some	situations,	you
will	want	to	append	data	to	an	existing	file.	The	FileWriter	class	takes	an	optional	Boolean	field
append	that	defaults	to	false	if	it	is	excluded.	To	open	a	file	for	appending	to	the	next	available	line,	use



this:

/*	setting	FileWriter	append	bit	keeps	existing	data	and	appends	new	data	*/

try(BufferedWriter	bw	=	new	BufferedWriter(

				new	FileWriter("somefile.txt",	true)))	{

				for(String	s	:	myStringList){

								bw.write(s);

								/*	don't	forget	to	append	a	new	line!	*/

								bw.newLine();

				}

}	catch	(Exception	e)	{

				System.out.println(e.getMessage());

}

Still	another	option	is	to	use	the	PrintWriter	class,	which	wraps	around	the	BufferedWriter.
PrintWriter	and	has	a	method	println()	that	uses	the	native	newline	character	of	whatever	operating
system	you	are	on.	So	the	\n	can	be	excluded	in	the	code.	This	has	the	advantage	that	you	don’t	have	to
worry	about	adding	those	pesky	newline	characters.	This	could	also	be	useful	if	you	are	generating	text
files	on	your	own	computer	(and	therefore	OS)	and	will	be	consuming	these	files	yourself.	Here	is	an
example	using	PrintWriter:

try(PrintWriter	pw	=	new	PrintWriter(new	BufferedWriter(

				new	FileWriter("somefile.txt")))	)	{

				for(String	s	:	myStringList){

								/*	adds	a	new	line	for	you!	*/

								pw.println(s);

				}

}	catch	(Exception	e)	{

				System.out.println(e.getMessage());

}

Any	of	these	methods	work	just	fine	with	JSON	data.	Convert	each	JSON	object	to	a	String	with	the
JSONObject.toString()	method	and	write	the	String.	If	you	are	writing	one	JSON	object,	such	as	a
configuration	file,	then	it	is	as	simple	as	this:

JSONObject	obj	=	...

try(BufferedWriter	bw	=	new	BufferedWriter(new	FileWriter("somefile.txt"))	)	{

				bw.write(obj.toString());

}

}	catch	(Exception	e)	{

				System.out.println(e.getMessage());

}

When	creating	a	JSON	data	file	(a	stack	of	JSON	objects),	loop	through	your	collection	of	JSONObjects:

List<JSONObject>	dataList	=	...

try(BufferedWriter	bw	=	new	BufferedWriter(new	FileWriter("somefile.txt"))	)	{

				for(JSONObject	obj	:	dataList){

								bw.write(obj.toString());

								/*	don't	forget	to	append	a	new	line!	*/

								bw.newLine();

				}

}	catch	(Exception	e)	{

				System.out.println(e.getMessage());

}

Don’t	forget	to	set	the	append-bit	in	FileWriter	if	this	file	is	accumulative!	You	can	add	more	JSON



records	to	the	end	of	this	file	simply	by	setting	the	append-bit	in	the	FileWriter:

try(BufferedWriter	bw	=	new	BufferedWriter(

				new	FileWriter("somefile.txt",	true))	)	{

...

}



Mastering	Database	Operations
The	robustness	and	flexibility	of	relational	databases	such	as	MySQL	make	them	the	ideal	technology	for
a	wide	range	of	use	cases.	As	a	data	scientist,	you	will	most	likely	interact	with	relational	databases	in
connection	to	a	larger	application,	or	perhaps	you	will	generate	tables	of	condensed	and	organized	data
specific	to	the	tasks	of	the	data	science	group.	In	either	case,	mastering	the	command	line,	Structured
Query	Language	(SQL),	and	Java	Database	Connectivity	(JDBC)	are	critical	skills.



Command-Line	Clients
The	command	line	is	a	great	environment	for	managing	the	database	as	well	as	performing	queries.	As	an
interactive	shell,	the	client	enables	rapid	iteration	of	commands	useful	for	exploring	the	data.	After	you
work	out	queries	on	the	command	line,	you	can	later	transfer	the	SQL	to	your	Java	program,	where	the
query	can	be	parameterized	for	more	flexible	use.	All	of	the	popular	databases	such	as	MySQL,
PostgreSQL,	and	SQLite	have	command-line	clients.	On	systems	where	MySQL	has	been	installed	for
development	purposes	(e.g.,	your	personal	computer),	you	should	be	able	to	connect	with	an	anonymous
login	with	an	optional	database	name:

bash$	mysql	<database>

However,	you	might	not	be	able	to	create	a	new	database.	You	can	log	in	as	the	database	administrator:

bash$	mysql	-u	root	<database>

Then	you	can	have	full	access	and	privileges.	In	all	other	cases	(e.g.,	you	are	connecting	to	a	production
machine,	remote	instance,	or	cloud-based	instance),	you	will	need	the	following:

bash$	mysql	-h	host	-P	port	-u	user	-p	password	<database>

Upon	connecting,	you	will	be	greeted	with	the	MySQL	shell,	where	you	can	make	queries	for	showing	all
the	databases	you	have	access	to,	the	name	of	the	database	you	are	connected	to,	and	the	username:

mysql>	SHOW	DATABASES;

To	switch	databases	to	a	new	database,	the	command	is	USE	dbname:

mysql>	USE	myDB;

You	can	create	tables	now:

mysql>	CREATE	TABLE	my_table(id	INT	PRIMARY	KEY,	stuff	VARCHAR(256));

Even	better,	if	you	have	those	table	creation	scripts	stored	away	as	files,	the	following	will	read	in	and
execute	the	file:

mysql>	SOURCE	<filename>;

Of	course,	you	may	want	to	know	what	tables	are	in	your	database:

mysql>	SHOW	TABLES;

You	may	also	want	to	get	a	detailed	description	of	a	table,	including	column	names,	data	types,	and
constraints:

mysql>	DESCRIBE	<tablename>;



Structured	Query	Language
Structured	Query	Language	(SQL)	is	a	powerful	tool	for	exploring	data.	While	object-relational	mapping
(ORM)	frameworks	have	a	place	in	enterprise	software	applications,	you	may	find	them	too	restrictive
for	the	kinds	of	tasks	you	will	face	as	a	data	scientist.	It	is	a	good	idea	to	brush	up	on	your	SQL	skills	and
be	comfortable	with	the	basics	presented	here.

Create
To	create	databases	and	tables,	use	the	following	SQL:

CREATE	DATABASE	<databasename>;

CREATE	TABLE	<tablename>	(	col1	type,	col2	type,	...);

Select
A	generalized	bare-bones	SELECT	statement	will	have	this	form:

SELECT

				[DISTINCT]

				col_name,	col_name,	...	col_name

				FROM	table_name

				[WHERE	where_condition]

				[GROUP	BY	col_name	[ASC	|	DESC]]

				[HAVING	where_condition]

				[ORDER	BY	col_name	[ASC	|	DESC]]

				[LIMIT	row_count	OFFSET	offset]

				[INTO	OUTFILE	'file_name']

A	few	tricks	may	come	in	handy.	Suppose	your	dataset	contains	millions	of	points,	and	you	just	want	to
get	a	general	idea	of	the	shape.	You	can	return	a	random	sample	by	using	ORDER	BY:

ORDER	BY	RAND();

And	you	can	set	LIMIT	to	the	sample	size	you	would	like	back:

ORDER	BY	RAND()	LIMIT	1000;

Insert
Inserting	data	into	a	new	row	is	implemented	via	the	following:

INSERT	INTO	tablename(col1,	col2,	...)	VALUES(val1,	val2,	...);

Note	that	you	can	drop	the	column	name	entirely	if	the	values	account	for	all	the	columns	and	not	just	a
subset:

INSERT	INTO	tablename	VALUES(val1,	val2,	...);

You	can	also	insert	multiple	records	at	once:

INSERT	INTO	tablename(col1,	col2,	...)	VALUES(val1,	val2,	...),(val1,	val2,	...),

(val1,	val2,	...);



Update
On	some	occasions,	you	will	need	to	alter	an	existing	record.	A	lot	of	times	this	occurs	quickly,	on	the
command	line,	when	you	need	to	patch	a	mistake	or	correct	a	simple	typo.	Although	you	will	undoubtedly
access	databases	in	production,	analytics,	and	testing,	you	may	also	find	yourself	in	an	ad	hoc	DBA
position.	Updating	records	is	common	when	dealing	with	real	users	and	real	data:

UPDATE	table_name	SET	col_name	=	'value'	WHERE	other_col_name	=	'other_val';

In	the	realm	of	data	science,	it	is	hard	to	envision	a	situation	where	you	will	be	programmatically
updating	data.	There	will	be	exceptions,	of	course,	such	as	the	aforementioned	typo	corrections	or	when
building	a	table	piecemeal,	but	for	the	most	part,	updating	important	data	sounds	like	a	recipe	for	disaster.
This	is	particularly	true	if	multiple	users	are	relying	on	the	same	data	and	have	already	written	code,	and
subsequent	analyses	depend	on	a	static	dataset.

Delete
Deleting	data	is	probably	unnecessary	in	these	days	of	cheap	storage,	but	just	like	UPDATE,	deleting	will
come	in	handy	when	you’ve	made	an	error	and	don’t	want	to	rebuild	your	whole	database.	Typically,	you
will	be	deleting	records	based	on	certain	criteria,	such	as	a	user_id	or	record_id,	or	before	a	certain
date:

DELETE	FROM	<tablename>	WHERE	<col_name>	=	'col_value';

Another	useful	command	is	TRUNCATE,	which	deletes	all	the	data	in	a	table	but	keeps	the	table	intact.
Essentially,	TRUNCATE	wipes	a	table	clean:

TRUNCATE	<tablename>;

Drop
If	you	want	to	delete	all	the	contents	of	a	table	and	the	table	itself,	you	must	DROP	the	table.	This	gets	rid
of	tables	entirely:

DROP	TABLE	<tablename>;

This	deletes	an	entire	database	and	all	of	its	contents:

DROP	DATABASE	<databasename>;



Java	Database	Connectivity
The	Java	Database	Connectivity	(JDBC)	is	a	protocol	connecting	Java	applications	with	any	SQL-
compliant	database.	The	JDBC	drivers	for	each	database	vendor	exist	as	a	separate	JAR	that	must	be
included	in	build	and	runtime.	The	JDBC	technology	strives	for	a	uniform	layer	between	applications	and
databases	regardless	of	the	vendor.

Connections
Connecting	to	a	database	with	JDBC	is	extremely	easy	and	convenient.	All	you	need	is	a	properly	formed
URI	for	the	database	that	takes	this	general	form:

String	uri	=	"jdbc:<dbtype>:[location]/<dbname>?<parameters>"

The	DriverManager.getConnection()	method	will	throw	an	exception,	and	you	have	two	choices	for
dealing	with	this.	The	modern	Java	way	is	to	put	the	connection	inside	the	try	statement,	known	as	a	try
with	resource.	In	this	way,	the	connection	will	be	automatically	closed	when	the	block	is	done	executing,
so	you	do	not	have	to	explicitly	put	in	a	call	to	Connection.close().	Remember	that	if	you	decide	to	put
the	connection	statement	in	the	actual	try	block,	you	will	need	to	explicitly	close	the	connection,
probably	in	a	finally	block:

String	uri	=	"jdbc:mysql://localhost:3306/myDB?user=root";

try(Connection	c	=	DriverManager.getConnection(uri))	{

				//	TODO	do	something	here

}	catch	(SQLException	e)	{

				System.err.println(e.getMessage());

}

Now	that	you	have	a	connection,	you	need	to	ask	yourself	two	questions:
Are	there	any	variables	in	the	SQL	string	(will	the	SQL	string	be	altered	in	any	way)?

Am	I	expecting	any	results	to	come	back	from	the	query	other	than	an	indicator	that	it	was	successful
or	not?

Start	by	assuming	that	you	will	create	a	Statement.	If	the	Statement	will	take	a	variable	(e.g.,	if	the
SQL	will	be	appended	to	by	an	application	variable),	then	use	a	PreparedStatement	instead.	If	you	do
not	expect	any	results	back,	you	are	OK.	If	you	are	expecting	results	to	come	back,	you	need	to	use
ResultSets	to	contain	and	process	the	results.

Statements
When	executing	an	SQL	statement,	consider	the	following	example:

DROP	TABLE	IF	EXISTS	data;

CREATE	TABLE	IF	NOT	EXISTS	data(

				id	INTEGER	PRIMARY	KEY,

				yr	INTEGER,

				city	VARCHAR(80));

INSERT	INTO	data(id,	yr,	city)	VALUES(1,	2015,	"San	Francisco"),

				(2,	2014,	"New	York"),(3,	2012,	"Los	Angeles");



All	of	the	SQL	statements	are	hardcoded	strings	with	no	varying	parts.	They	return	no	values	(other	than	a
Boolean	return	code)	and	can	be	executed,	individually,	inside	the	above	try-catch	block	with	this:

String	sql	=	"<sql	string	goes	here>";

Statement	stmt	=	c.createStatement();

stmt.execute(sql);

stmt.close();

Prepared	statements
You	will	probably	not	be	hardcoding	all	your	data	into	an	SQL	statement.	Likewise,	you	may	create	a
generic	update	statement	for	updating	a	record’s	city	column	given	an	id	by	using	an	SQL	WHERE	clause.
Although	you	may	be	tempted	to	build	SQL	strings	by	concatenating	them,	this	is	not	a	recommended
practice.	Anytime	external	input	is	substituted	into	an	SQL	expression,	there	is	room	for	an	SQL	injection
attack.	The	proper	method	is	to	use	placeholders	(as	question	marks)	in	the	SQL	statement	and	then	use
the	class	PreparedStatement	to	properly	quote	the	input	variables	and	execute	the	query.	Prepared
statements	not	only	have	a	security	advantage	but	one	of	speed	as	well.	The	PreparedStatement	is
compiled	one	time,	and	for	a	large	number	of	inserts,	this	makes	the	process	extremely	efficient	compared
to	compiling	a	new	SQL	statement	for	each	and	every	insertion.	The	preceding	INSERT	statement,	with
corresponding	Java	can	be	written	as	follows:

String	insertSQL	=	"INSERT	INTO	data(id,	yr,	city)	VALUES(?,	?,	?)";

PreparedStatement	ps	=	c.prepareStatement(insertSQL);

/*	set	the	value	for	each	placeholder	?	starting	with	index	=	1	*/												

ps.setInt(1,	1);

ps.setInt(2,	2015);

ps.setString(3,	"San	Francisco");

ps.execute();

ps.close();

But	what	if	you	have	a	lot	of	data	and	need	to	loop	through	a	list?	This	is	where	you	execute	in	batch
mode.	For	example,	suppose	you	have	a	List	of	Record	objects	obtained	from	an	import	of	CSV:

String	insertSQL	=	"INSERT	INTO	data(id,	yr,	city)	VALUES(?,	?,	?)";

PreparedStatement	ps	=	c.prepareStatement(insertSQL);

List<Record>	records	=	FileUtils.getRecordsFromCSV();

for(Record	r:	records)	{

				ps.setInt(1,	r.id);

				ps.setInt(2,	r.year);

				ps.setString(3,	r.city);

				ps.addBatch();

}

ps.executeBatch();

ps.close();

Result	sets
SELECT	statements	return	results!	Anytime	you	find	yourself	writing	SELECT	you	will	need	to	properly
call	Statement.executeQuery()	instead	of	execute()	and	assign	the	return	value	to	a	ResultSet.	In
database-speak,	the	ResultSet	is	a	cursor	that	is	an	iterable	data	structure.	As	such,	the	Java	class
ResultSet	implements	the	Java	Iterator	class	and	the	familiar	while-next	loop	can	be	used:

String	selectSQL	=	"SELECT	id,	yr,	city	FROM	data";

Statement	st	=	c.createStatement();

ResultSet	rs	=	st.executeQuery(selectSQL);



while(rs.next())	{

				int	id	=	rs.getInt("id");

				int	year	=	rs.getInt("yr");

				String	city	=	rs.getString("city"));

				//	TODO	do	something	with	each	row	of	values

}

rs.close();

st.close();

As	in	the	case	with	reading	files	line	by	line,	you	must	choose	what	to	do	with	the	data.	Perhaps	you	will
store	each	value	in	an	array	of	that	type,	or	perhaps	you	will	store	each	row	of	data	into	a	class,	and	build
a	list	with	that	class.	Note	that	we	are	retrieving	the	values	from	the	ResultSet	instance	by	calling
column	values	by	their	column	names	according	to	the	database	schema.	We	can	instead	increment	through
the	column	indices	starting	with	1.



Visualizing	Data	with	Plots
Data	visualization	is	an	important	and	exciting	component	of	data	science.	The	combination	of	broadly
available,	interesting	data	and	interactive	graphical	technologies	has	led	to	stunning	visualizations,
capable	of	telling	complex	stories.	Many	times,	our	visualizations	are	the	eye	candy	that	everyone	has
been	anticipating.	Of	utmost	importance	is	to	realize	that	the	same	source	of	data	can	be	used	to	tell
completely	different	stories	depending	on	not	only	the	segment	of	the	data	you	choose	to	show,	but	also
the	graphical	styling	utilized.

Keeping	in	mind	that	data	visualization	should	always	take	into	consideration	the	audience,	there	are
roughly	three	kinds	of	consumers	of	a	visualization.	The	first	is	yourself,	the	all-knowing	expert	who	is
most	likely	iterating	quickly	on	an	analysis	or	algorithm	development.	Your	requirements	are	to	see	the
data	as	plainly	and	quickly	as	possible.	Things	such	as	setting	plot	titles,	axis	labels,	smoothing,	legends,
or	date	formatting	might	not	be	important,	because	you	are	intimately	aware	of	what	you	are	looking	at.	In
essence,	we	often	plot	data	to	get	a	quick	overview	of	the	data	landscape,	without	concerning	ourselves
with	how	others	will	view	it.

The	second	consumer	of	data	visualizations	is	the	industry	expert.	After	you	have	solved	a	data	science
problem	and	you	think	it’s	ready	to	share,	it’s	essential	to	fully	label	the	axis,	put	a	meaningful,
descriptive	title	on	it,	make	sure	any	series	of	data	are	described	by	a	legend,	and	ensure	that	the	graphic
you	have	created	can	mostly	tell	a	story	on	its	own.	Even	if	it’s	not	visually	stunning,	your	colleagues	and
peers	will	probably	not	be	concerned	with	eye	candy,	but	rather	the	message	you	are	trying	to	convey.	In
fact,	it	will	be	much	easier	to	make	a	scientific	evaluation	on	the	merits	of	the	work	if	the	visualization	is
clear	of	graphical	widgets	and	effects.	Of	course,	this	format	is	also	essential	for	archiving	your	data.	One
month	later,	you	will	not	remember	what	those	axes	are	if	you	don’t	label	them	now!

The	third	category	of	visualization	consumer	is	everybody	else.	This	is	the	time	to	get	creative	and
artistic,	because	a	careful	choice	of	colors	and	styles	can	make	good	data	seem	great.	Be	cautious,
however,	of	the	tremendous	amount	of	time	and	effort	you	will	spend	preparing	graphics	at	this	level	of
consumer.	An	added	advantage	of	using	JavaFX	is	the	interactivity	allowed	via	mouse	options.	This
enables	you	to	build	a	graphical	application	similar	to	many	of	the	web-based	dashboards	you	are
accustomed	to.



Creating	Simple	Plots
Java	contains	native	graphics	capabilities	in	the	JavaFX	package.	Since	version	1.8,	scientific	plotting	is
enabled	with	charts	of	many	types	such	as	scatter,	line,	bar,	stacked	bar,	pie,	area,	stacked	area,	or	bubble
via	the	javafx.scene.chart	package.	A	Chart	object	is	contained	in	a	Scene	object,	which	is
contained	in	a	Stage	object.	The	general	form	is	to	extend	an	executable	Java	class	with	Application
and	place	all	the	plotting	directives	in	the	overridden	method	Application.start().	The
Application.launch()	method	must	be	called	in	the	main	method	to	create	and	display	the	chart.

Scatter	plots
An	example	of	a	simple	plot	is	a	scatter	chart,	which	plots	a	set	of	x-y	pairs	of	numbers	as	points	on	a
grid.	These	charts	utilize	the	javafx.scene.chart.XYChart.Data	and
javafx.scene.chart.XYChart.Series	classes.	The	Data	class	is	a	container	that	holds	any	dimension
of	mixed	types	of	data,	and	the	Series	class	contains	an	ObservableList	of	Data	instances.	There	are
factory	methods	in	the	javafx.collections.FXCollections	class	for	creating	instances	of
ObservableList	directly,	should	you	prefer	that	route.	However,	for	scatter,	line,	area,	bubble,	and	bar
charts,	this	is	unnecessary	because	they	all	utilize	the	Series	class:

public	class	BasicScatterChart	extends	Application	{

				public	static	void	main(String[]	args)	{

								launch(args);			

				}

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								int[]	xData	=	{1,	2,	3,	4,	5};

								double[]	yData	=	{1.3,	2.1,	3.3,	4.0,	4.8};

								/*	add	Data	to	a	Series	*/

								Series	series	=	new	Series();

								for	(int	i	=	0;	i	<	xData.length;	i++)	{

												series.getData().add(new	Data(xData[i],	yData[i]));

								}

								

								/*	define	the	axes	*/

								NumberAxis	xAxis	=	new	NumberAxis();

								xAxis.setLabel("x");

								NumberAxis	yAxis	=	new	NumberAxis();

								yAxis.setLabel("y");

								

								/*	create	the	scatter	chart	*/

								ScatterChart<Number,Number>	scatterChart	=	

												new	ScatterChart<>(xAxis,	yAxis);

								scatterChart.getData().add(series);

								

								/*	create	a	scene	using	the	chart	*/

								Scene	scene		=	new	Scene(scatterChart,	800,	600);

								/*	tell	the	stage	what	scene	to	use	and	render	it!	*/

								stage.setScene(scene);

								stage.show();

				}

				

}

Figure	1-1	depicts	the	default	graphics	window	that	is	displayed	when	rendering	a	JavaFX	chart	for	a
simple	set	of	data.



Figure	1-1.	Scatter	plot	example

The	ScatterChart	class	can	readily	be	replaced	with	LineChart,	AreaChart,	or	BubbleChart	in	the
preceding	example.

Bar	charts
As	an	x-y	chart,	the	bar	chart	utilizes	the	Data	and	Series	classes.	In	this	case,	however,	the	only
difference	is	that	the	x-axis	must	be	a	string	type	(as	opposed	to	a	numeric	type)	and	utilizes	the
CategoryAxis	class	instead	of	the	NumberAxis	class.	The	y-axis	remains	as	a	NumberAxis.	Typically,
the	categories	in	a	bar	chart	are	something	like	days	of	the	week	or	market	segments.	Note	that	the
BarChart	class	takes	a	String,	Number	pair	of	types	inside	the	diamonds.	These	are	useful	for	making
histograms,	and	we	show	one	in	Chapter	3:

public	class	BasicBarChart	extends	Application	{

				public	static	void	main(String[]	args)	{

								launch(args);			

				}

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								String[]	xData	=	{"Mon",	"Tues",	"Wed",	"Thurs",	"Fri"};

								double[]	yData	=	{1.3,	2.1,	3.3,	4.0,	4.8};



								/*	add	Data	to	a	Series	*/

								Series	series	=	new	Series();

								for	(int	i	=	0;	i	<	xData.length;	i++)	{

												series.getData().add(new	Data(xData[i],	yData[i]));

								}

								

								/*	define	the	axes	*/

								CategoryAxis	xAxis	=	new	CategoryAxis();

								xAxis.setLabel("x");

								NumberAxis	yAxis	=	new	NumberAxis();

								yAxis.setLabel("y");

								

								/*	create	the	bar	chart	*/

								BarChart<String,Number>	barChart	=	new	barChart<>(xAxis,	yAxis);

								barChart.getData().add(series);

								

								/*	create	a	scene	using	the	chart	*/

								Scene	scene		=	new	Scene(barChart,	800,	600);

								/*	tell	the	stage	what	scene	to	use	and	render	it!	*/

								stage.setScene(scene);

								stage.show();

				}

				

}

Plotting	multiple	series
Multiple	series	of	any	type	of	plot	are	easily	implemented.	In	the	case	of	the	scatter	plot	example,	you
need	only	to	create	multiple	Series	instances:

Series	series1	=	new	Series();

Series	series2	=	new	Series();

Series	series3	=	new	Series();

The	series	are	then	added	in	all	at	once	using	the	addAll()	method	instead	of	the	add()	method:

scatterChart.getData().addAll(series1,	series2,	series3);

The	resultant	plot	will	show	the	points	superimposed	in	various	colors	with	a	legend	denoting	their	label
name.	The	same	holds	true	for	line,	area,	bar,	and	bubble	charts.	An	interesting	feature	here	is	the
StackedAreaChart	and	StackedBarChart	classes,	which	operate	the	same	way	as	their	respective
AreaChart	and	BarChart	superclasses,	except	that	the	data	are	stacked	one	above	the	other	so	they	do
not	overlap	visually.

Of	course,	sometimes	a	visualization	would	benefit	from	mixing	data	from	multiple	plot	types,	such	as	a
scatter	plot	of	data	with	a	line	plot	running	through	the	data.	Currently,	the	Scene	class	accepts	only	charts
of	one	type.	However,	we	will	demonstrate	some	workarounds	later	in	this	chapter.

Basic	formatting
There	are	useful	options	for	making	your	plot	look	really	professional.	The	first	place	to	cleanup	might	be
the	axes.	Often	the	minor	ticks	are	overkill.	We	can	also	set	the	plot	range	with	minimum	and	maximum
values:

scatterChart.setBackground(null);

scatterChart.setLegendVisible(false);

scatterChart.setHorizontalGridLinesVisible(false);



scatterChart.setVerticalGridLinesVisible(false);

scatterChart.setVerticalZeroLineVisible(false);

At	some	point,	it	might	be	easier	to	keep	the	plotting	mechanics	simple	and	include	all	the	style	directives
in	a	CSS	file.	The	default	CSS	for	JavaFX8	is	called	Modena	and	will	be	implemented	if	you	don’t
change	the	style	options.	You	can	create	your	own	CSS	and	include	it	in	the	scene	with	this:

scene.getStylesheets().add("chart.css");

The	default	path	is	in	the	src/main/resources	directory	of	your	Java	package.



Plotting	Mixed	Chart	Types
Often	we	want	to	display	multiple	plot	types	in	one	graphic	—	for	example,	when	you	want	to	display	the
data	points	as	an	x-y	scatter	plot	and	then	overlay	a	line	plot	of	the	best	fitted	model.	Perhaps	you	will
also	want	to	include	two	more	lines	to	represent	the	boundary	of	the	model,	probably	one,	two,	or	three
multiples	of	the	standard	deviation	σ,	or	the	confidence	interval	1.96	×	σ.	Currently,	JavaFX	does	not
allow	multiple	plots	of	the	different	types	to	be	displayed	simultaneously	on	the	same	scene.	There	is	a
workaround,	however!	We	can	use	a	LineChart	class	to	plot	multiple	series	of	LineChart	instances	and
then	use	CSS	to	style	one	of	the	lines	to	show	only	points,	one	to	only	show	a	solid	line,	and	two	to	show
only	a	dashed	line.	Here	is	the	CSS:

.default-color0.chart-series-line	{

				-fx-stroke:	transparent;

}

.default-color1.chart-series-line	{

				-fx-stroke:	blue;	-fx-stroke-width:	1;

}

.default-color2.chart-series-line	{

				-fx-stroke:	blue;

				-fx-stroke-width:	1;

				-fx-stroke-dash-array:	1	4	1	4;

}

.default-color3.chart-series-line	{	

				-fx-stroke:	blue;

				-fx-stroke-width:	1;

				-fx-stroke-dash-array:	1	4	1	4;

}

/*.default-color0.chart-line-symbol	{	

				-fx-background-color:	white,	green;	

}*/

.default-color1.chart-line-symbol	{	

				-fx-background-color:	transparent,	transparent;

}

.default-color2.chart-line-symbol	{	

				-fx-background-color:	transparent,	transparent;	

}

.default-color3.chart-line-symbol	{	

				-fx-background-color:	transparent,	transparent;	

}

The	plot	looks	like	Figure	1-2.



Figure	1-2.	Plot	of	mixed	line	types	with	CSS



Saving	a	Plot	to	a	File
You	will	undoubtedly	have	an	occasion	to	save	a	plot	to	a	file.	Perhaps	you	will	be	sending	the	plot	off	in
an	email	or	including	it	in	a	presentation.	With	a	mixture	of	standard	Java	classes	and	JavaFX	classes,
you	can	easily	save	plots	to	any	number	of	formats.	With	CSS,	you	can	even	style	your	plots	to	have
publication-quality	graphics.	Indeed,	the	figures	in	this	chapter	(and	the	rest	of	the	book)	were	prepared
this	way.

Each	chart	type	subclasses	the	abstract	class	Chart,	which	inherits	the	method	snapshot()	from	the
Node	class.	Chart.snapshot()	returns	a	WritableImage.	There	is	one	catch	that	must	be	addressed:	in
the	time	it	takes	the	scene	to	render	the	data	on	the	chart,	the	image	will	be	saved	to	a	file	without	the
actual	data	on	the	plot.	It	is	critical	to	turn	off	animation	via	Chart.setAnimated(false)	someplace
after	the	chart	is	instantiated	and	before	data	is	added	to	the	chart	with	Chart.getData.add()	or	its
equivalent:

/*	do	this	right	after	the	chart	is	instantiated	*/

scatterChart.setAnimated(false);

...

/*	render	the	image	*/

stage.show();

...

/*	save	the	chart	to	a	file	AFTER	the	stage	is	rendered	*/							

WritableImage	image	=	scatterChart.snapshot(new	SnapshotParameters(),	null);

File	file	=	new	File("chart.png");

ImageIO.write(SwingFXUtils.fromFXImage(image,	null),	"png",	file);

NOTE
All	the	data	plots	in	this	book	were	created	with	JavaFX	8.



Chapter	2.	Linear	Algebra

Now	that	we	have	spent	a	whole	chapter	acquiring	data	in	some	format	or	another,	we	will	most	likely
end	up	viewing	the	data	(in	our	minds)	in	the	form	of	spreadsheet.	It	is	natural	to	envision	the	names	of
each	column	going	across	from	left	to	right	(age,	address,	ID	number,	etc.),	with	each	row	representing	a
unique	record	or	data	point.	Much	of	data	science	comes	down	to	this	exact	formulation.	What	we	are
seeking	to	find	is	a	relationship	between	any	number	of	columns	of	interest	(which	we	will	call
variables)	and	any	number	of	columns	that	indicate	a	measurable	outcome	(which	we	will	call
responses).

Typically,	we	use	the	letter	 	to	denote	the	variables,	and	 	for	the	responses.	Likewise,	the	responses
can	be	designated	by	a	matrix	Y	that	has	a	number	of	columns	 	and	must	have	the	same	number	of	rows	

	as	X	does.	Note	that	in	many	cases,	there	is	only	one	dimension	of	response	variable	such	that	
.	However,	it	helps	to	generalize	linear	algebra	problems	to	arbitrary	dimensions.

In	general,	the	main	idea	behind	linear	algebra	is	to	find	a	relationship	between	X	and	Y.	The	simplest	of
these	is	to	ask	whether	we	can	multiply	X	by	a	new	matrix	of	yet-to-be-determined	values	W,	such	that	the
result	is	exactly	(or	nearly)	equal	to	Y.	An	example	of	XW	=	Y	looks	like	this:

Keep	in	mind	that	as	the	equation	is	drawn,	the	sizes	of	the	matrices	look	similar.	This	can	be	misleading,
because	in	most	cases	the	number	of	data	points	 	is	large,	perhaps	in	the	millions	or	billions,	while	the
number	of	columns	 	for	the	respective	X	and	Y	matrices	is	usually	much	smaller	(from	tens	to
hundreds).	You	will	then	take	notice	that	regardless	of	the	size	of	 	(e.g.,	100,000),	the	size	of	the	W
matrix	is	independent	of	 ;	its	size	is	 	(e.g.,	10	×	10).	And	this	is	the	heart	of	linear	algebra:	that
we	can	explain	the	contents	of	extremely	large	data	structures	such	as	X	and	Y	by	using	a	much	more
compact	data	structure	W.	The	rules	of	linear	algebra	enable	us	to	express	any	particular	value	of	Y	in
terms	of	a	row	of	X	and	column	of	W.	For	example	the	value	of	 	is	written	out	as	follows:

In	the	rest	of	this	chapter,	we	will	work	out	the	rules	and	operations	of	linear	algebra,	and	in	the	final
section	show	the	solution	to	the	linear	system	XW	=	Y.	More	advanced	topics	in	data	science	such	as
those	presented	in	Chapters	4	and	5,	will	rely	heavily	on	the	use	of	linear	algebra.



Building	Vectors	and	Matrices
Despite	any	formal	definitions,	a	vector	is	just	a	one-dimensional	array	of	a	defined	length.	Many
examples	may	come	to	mind.	You	might	have	an	array	of	integers	representing	the	counts	per	day	of	a	web
metric.	Maybe	you	have	a	large	number	of	“features”	in	an	array	that	will	be	used	for	input	into	a
machine-learning	routine.	Or	perhaps	you	are	keeping	track	of	geometric	coordinates	such	as	x	and	y,	and
you	might	create	an	array	for	each	pair	[x,y].	While	we	can	argue	the	philosophical	meaning	of	what	a
vector	is	(i.e.,	an	element	of	vector	space	with	magnitude	and	direction),	as	long	as	you	are	consistent	in
how	you	define	your	vectors	throughout	the	problem	you	are	solving,	then	all	the	mathematical
formulations	will	work	beautifully,	without	any	concern	for	the	topic	of	study.

In	general,	a	vector	x	has	the	following	form,	comprising	n	components:

Likewise,	a	matrix	A	is	just	a	two-dimensional	array	with	m	rows	and	n	columns:

A	vector	can	also	be	represented	in	matrix	notation	as	a	column	vector:



WARNING
We	use	bold	lowercase	letters	to	represent	vectors	and	use	bold	uppercase	letters	to	represent	matrices.	Note	that	the	vector	x
can	also	be	represented	as	a	column	of	the	matrix	X.

In	practice,	vectors	and	matrices	are	useful	to	data	scientists.	A	common	example	is	a	dataset	in	which
(feature)	vectors	are	stacked	on	top	of	each	other,	and	usually	the	number	of	rows	m	is	much	larger	than
the	number	of	columns	n.	In	essence,	this	type	of	data	structure	is	really	a	list	of	vectors,	but	putting	them
in	matrix	form	enables	efficient	calculation	of	all	sorts	of	linear	algebra	quantities.	Another	type	of	matrix
encountered	in	data	science	is	one	in	which	the	components	represent	a	relationship	between	the
variables,	such	as	a	covariance	or	correlation	matrix.



Array	Storage
The	Apache	Commons	Math	library	offers	several	options	for	creating	vectors	and	matrices	of	real
numbers	with	the	respective	RealVector	and	RealMatrix	classes.	Three	of	the	most	useful	constructor
types	allocate	an	empty	instance	of	known	dimension,	create	an	instance	from	an	array	of	values,	and
create	an	instance	by	deep	copying	an	existing	instance,	respectively.	To	instantiate	an	empty,	n-
dimensional	vector	of	type	RealVector,	use	the	ArrayRealVector	class	with	an	integer	size:

int	size	=	3;

RealVector	vector	=	new	ArrayRealVector(size);

If	you	already	have	an	array	of	values,	a	vector	can	be	created	with	that	array	as	a	constructor	argument:

double[]	data	=	{1.0,	2.2,	4.5};

RealVector	vector	=	new	ArrayRealVector(data);

A	new	vector	can	also	be	created	by	deep	copying	an	existing	vector	into	a	new	instance:

RealVector	vector	=	new	ArrayRealVector(realVector);

To	set	a	default	value	for	all	elements	of	a	vector,	include	that	value	in	the	constructor	along	with	the	size:

int	size	=	3;

double	defaultValue	=	1.0;

RealVector	vector	=	new	ArrayRealVector(size,	defaultValue);

A	similar	set	of	constructors	follows	for	instantiating	matrices,	an	empty	matrix	of	known	dimensions	is
instantiated	with	the	following:

int	rowDimension	=	10;

int	colDimension	=	20;

RealMatrix	matrix	=	new	Array2DRowRealMatrix(rowDimension,	colDimension);

Or	if	you	already	have	a	two-dimensional	array	of	doubles,	you	can	pass	it	to	the	constructor:

double[][]	data	=	{{1.0,	2.2,	3.3},	{2.2,	6.2,	6.3},	{3.3,	6.3,	5.1}};	

RealMatrix	matrix	=	new	Array2DRowRealMatrix(data);

Although	there	is	no	method	for	setting	the	entire	matrix	to	a	default	value	(as	there	is	with	a	vector),
instantiating	a	new	matrix	sets	all	elements	to	zero,	so	we	can	easily	add	a	value	to	each	element
afterward:

int	rowDimension	=	10;

int	colDimension	=	20;

double	defaultValue	=	1.0;

RealMatrix	matrix	=	new	Array2DRowRealMatrix(rowDimension,	colDimension);

matrix.scalarAdd(defaultValue);

Making	a	deep	copy	of	a	matrix	may	be	performed	via	the	RealMatrix.copy()	method:

/*	deep	copy	contents	of	matrix	*/

RealMatrix	anotherMatrix	=	matrix.copy();



Block	Storage
For	large	matrices	with	dimensions	greater	than	50,	it	is	recommended	to	use	block	storage	with	the
BlockRealMatrix	class.	Block	storage	is	an	alternative	to	the	two-dimensional	array	storage	discussed
in	the	previous	section.	In	this	case,	a	large	matrix	is	subdivided	into	smaller	blocks	of	data	that	are
easier	to	cache	and	therefore	easier	to	operate	on.	To	allocate	space	for	a	matrix,	use	the	following
constructor:

RealMatrix	blockMatrix	=	new	BlockRealMatrix(50,	50);

Or	if	you	already	have	the	data	in	a	2D	array,	use	this	constructor:

double[][]	data	=	;

RealMatrix	blockMatrix	=	new	BlockRealMatrix(data);



Map	Storage
When	a	large	vector	or	matrix	is	almost	entirely	zeros,	it	is	termed	sparse.	Because	it	is	not	efficient	to
store	all	those	zeros,	only	the	positions	and	values	of	the	nonzero	elements	are	stored.	Behind	the	scenes,
this	is	easily	achieved	by	storing	the	values	in	a	HashMap.	To	create	a	sparse	vector	of	known	dimension,
use	the	following:

int	dim	=	10000;

RealVector	sparseVector	=	new	OpenMapRealVector(dim);

And	to	create	a	sparse	matrix,	just	add	another	dimension:

int	rows	=	10000;

int	cols	=	10000;

RealMatrix	sparseMatrix	=	new	OpenMapRealMatrix(rows,	cols);



Accessing	Elements
Regardless	of	the	type	of	storage	backing	the	vector	or	matrix,	the	methods	for	assigning	values	and	later
retrieving	them	are	equivalent.

CAUTION
Although	the	linear	algebra	theory	presented	in	this	book	uses	an	index	starting	at	1,	Java	uses	a	0-based	index	system.	Keep	this
in	mind	as	you	translate	algorithms	from	theory	to	code	and	in	particular,	when	setting	and	getting	values.

Setting	and	getting	values	uses	the	setEntry(int	index,	double	value)	and	getEntry(int	index)
methods:

/*	set	the	first	value	of	v	*/

vector.setEntry(0,	1.2)

/*	and	get	it	*/

double	val	=	vector.getEntry(0);

To	set	all	the	values	for	a	vector,	use	the	set(double	value)	method:

/*	zero	the	vector	*/

vector.set(0);

However,	if	v	is	a	sparse	vector,	there	is	no	point	to	setting	all	the	values.	In	sparse	algebra,	missing
values	are	assumed	to	be	zero.	Instead,	just	use	setEntry	to	set	only	the	values	that	are	nonzero.	To
retrieve	all	the	values	of	an	existing	vector	as	an	array	of	doubles,	use	the	toArray()	method:

double[]	vals	=	vector.toArray();

Similar	setting	and	getting	is	provided	for	matrices,	regardless	of	storage.	Use	the	setEntry(int	row,
int	column,	double	value)	and	getEntry(int	row,	int	column)	methods:

/*	set	first	row,	3	column	to	3.14	*/

matrix.setEntry(0,	2,	3.14);

/*	and	get	it	*/

double	val	=	matrix.getEntry(0,	2);

Unlike	the	vector	classes,	there	is	no	set()	method	to	set	all	the	values	of	a	matrix	to	one	value.	As	long
as	the	matrix	has	all	entries	set	to	0,	as	is	the	case	for	a	newly	constructed	matrix,	you	can	set	all	the
entries	to	one	value	by	adding	a	constant	with	code	like	this:

/*	for	an	existing	new	matrix	*/

matrix.scalarAdd(defaultValue);

Just	as	with	sparse	vectors,	setting	all	the	values	to	0	for	each	i,j	pair	of	a	sparse	matrix	is	not	useful.

To	get	all	the	values	of	a	matrix	in	the	form	of	an	array	of	doubles,	use	the	getData()	method:

double[][]	matrixData	=	matrix.getData();



Working	with	Submatrices
We	often	need	to	work	with	only	a	specific	part	of	a	matrix	or	want	to	include	a	smaller	matrix	in	a	larger
one.	The	RealMatrix	class	contains	several	useful	methods	for	dealing	with	these	common	cases.	For	an
existing	matrix,	there	are	two	ways	to	create	a	submatrix	from	it.	The	first	method	selects	a	rectangular
region	from	the	source	matrix	and	uses	those	entries	to	create	a	new	matrix.	The	selected	rectangular
region	is	defined	by	the	point	of	origin,	the	upper-left	corner	of	the	source	matrix,	and	the	lower-right
corner	defining	the	area	that	should	be	included.	It	is	invoked	as	RealMatrix.getSubMatrix(int
startRow,	int	endRow,	int	startColumn,	int	endColumn)	and	returns	a	RealMatrix	object	with
dimensions	and	values	determined	by	the	selection.	Note	that	the	endRow	and	endColumn	values	are
inclusive.

double[][]	data	=	{{1,2,3},{4,5,6},{7,8,9}};

RealMatrix	m	=	new	Array2DRowRealMatrix(data);

int	startRow	=	0;

int	endRow	=	1;

int	startColumn	=	1;

int	endColumn	=	2;

RealMatrix	subM	=	m.getSubMatrix(startRow,	endRow,	startColumn,	endColumn);	

//	{{2,3},{5,6}}

We	can	also	get	specific	rows	and	specific	columns	of	a	matrix.	This	is	achieved	by	creating	an	array	of
integers	designating	the	row	and	column	indices	we	wish	to	keep.	The	method	then	takes	both	of	these
arrays	as	RealMatrix.getSubMatrix(int[]	selectedRows,	int[]	selectedColumns).	The	three
use	cases	are	then	as	follows:

/*	get	selected	rows	and	all	columns	*/

int[]	selectedRows	=	{0,	2};

int[]	selectedCols	=	{0,	1,	2};

RealMatrix	subM	=	m.getSubMatrix(selectedRows,	selectedColumns);

//	{{1,2,3},{7,8,9}}

/*	get	all	rows	and	selected	columns	*/

int[]	selectedRows	=	{0,	1,	2};

int[]	selectedCols	=	{0,	2};

RealMatrix	subM	=	m.getSubMatrix(selectedRows,	selectedColumns);

//	{{1,3},{4,6},{7,9}}

/*	get	selected	rows	and	selected	columns	*/

int[]	selectedRows	=	{0,	2};

int[]	selectedCols	=	{1};

RealMatrix	subM	=	m.getSubMatrix(selectedRows,	selectedColumns);

//	{{2},{8}}

We	can	also	create	a	matrix	in	parts	by	setting	the	values	of	a	submatrix.	We	do	this	by	adding	a	double
array	of	data	to	an	existing	matrix	at	the	coordinates	specified	by	row	and	column	in
RealMatrix.setSubMatrix(double[][]	subMatrix,	int	row,	int	column):

double[][]	newData	=	{{-3,	-2},	{-1,	0}};

int	row	=	0;

int	column	=	0;

m.setSubMatrix(newData,	row,	column);

//	{{-3,-2,3},{-1,0,6},{7,8,9}}



Randomization
In	learning	algorithms,	we	often	want	to	set	all	the	values	of	a	matrix	(or	vectors)	to	random	numbers.	We
can	choose	the	statistical	distribution	that	implements	the	AbstractRealDistribution	interface	or	just
go	with	the	easy	constructor,	which	picks	random	numbers	between	–1	and	1.	We	can	pass	in	an	existing
matrix	or	vector	to	fill	in	the	values,	or	create	new	instances:

public	class	RandomizedMatrix	{

				

				private	AbstractRealDistribution	distribution;

				public	RandomizedMatrix(AbstractRealDistribution	distribution,	long	seed)	{

								this.distribution	=	distribution;

								distribution.reseedRandomGenerator(seed);

				}

				public	RandomizedMatrix()	{

								this(new	UniformRealDistribution(-1,	1),	0L);

				}

				public	void	fillMatrix(RealMatrix	matrix)	{

								for	(int	i	=	0;	i	<	matrix.getRowDimension();	i++)	{

												matrix.setRow(i,	distribution.sample(matrix.getColumnDimension()));

								}

				}

				

				public	RealMatrix	getMatrix(int	numRows,	int	numCols)	{

								RealMatrix	output	=	new	BlockRealMatrix(numRows,	numCols);

								for	(int	i	=	0;	i	<	numRows;	i++)	{

												output.setRow(i,	distribution.sample(numCols));

								}

								return	output;

				}

				public	void	fillVector(RealVector	vector)	{

								for	(int	i	=	0;	i	<	vector.getDimension();	i++)	{

												vector.setEntry(i,	distribution.sample());

								}

				}

				

				public	RealVector	getVector(int	dim)	{

								return	new	ArrayRealVector(distribution.sample(dim));

				}

}

We	can	create	a	narrow	band	of	normally	distributed	numbers	with	this:

int	numRows	=	3;

int	numCols	=	4;

long	seed	=	0L;

RandomizedMatrix	rndMatrix	=	new	RandomizedMatrix(

				new	NormalDistribution(0.0,	0.5),	seed);

RealMatrix	matrix	=	rndMatrix.getMatrix(numRows,	numCols);

//	-0.0217405716,-0.5116704988,-0.3545966969,0.4406692276

//	0.5230193567,-0.7567264361,-0.5376075694,-0.1607391808

//	0.3181005362,0.6719107279,0.2390245133,-0.1227799426



Operating	on	Vectors	and	Matrices
Sometimes	you	know	the	formulation	you	are	looking	for	in	an	algorithm	or	data	structure	but	you	may	not
be	sure	how	to	get	there.	You	can	do	some	“mental	pattern	matching”	in	your	head	and	then	choose	to
implement	(e.g.,	a	dot	product	instead	of	manually	looping	over	all	the	data	yourself).	Here	we	explore
some	common	operations	used	in	linear	algebra.



Scaling
To	scale	(multiply)	a	vector	by	a	constant	κ	such	that

Apache	Commons	Math	implements	a	mapping	method	whereby	an	existing	RealVector	is	multiplied	by
a	double,	resulting	in	a	new	RealVector	object:

double	k	=	1.2;

RealVector	scaledVector	=	vector.mapMultiply(k);

Note	that	a	RealVector	object	may	also	be	scaled	in	place	by	altering	the	existing	vector	permanently:

vector.mapMultiplyToSelf(k);

Similar	methods	exist	for	dividing	the	vector	by	k	to	create	a	new	vector:

RealVector	scaledVector	=	vector.mapDivide(k);

And	for	division	in	place:

vector.mapDivideToSelf(k);

A	matrix	A	can	also	be	scaled	by	a	factor	κ:

Here,	each	value	of	the	matrix	is	multiplied	by	a	constant	of	type	double.	A	new	matrix	is	returned:

double	k	=	1.2;

RealMatrix	scaledMatrix	=	matrix.scalarMultiply(k);



Transposing
Transposing	a	vector	or	matrix	is	analogous	to	tipping	it	over	on	its	side.	The	vector	transpose	of	x	is
denoted	as	XT.	For	a	matrix,	the	transpose	of	A	is	denoted	as	AT.	In	most	cases,	calculating	a	vector
transpose	will	not	be	necessary,	because	the	methods	of	RealVector	and	RealMatrix	will	take	into
account	the	need	for	a	vector	transpose	inside	their	logic.	A	vector	transpose	is	undefined	unless	the
vector	is	represented	in	matrix	format.	The	transpose	of	an	 	column	vector	is	then	a	new	matrix
row	vector	of	dimension	 .

When	you	absolutely	need	to	transpose	a	vector,	you	can	simply	insert	the	data	into	a	RealMatrix
instance.	Using	a	one-dimensional	array	of	double	values	as	the	argument	to	the	Array2DRowRealMatrix
class	creates	a	matrix	with	 	rows	and	one	column,	where	the	values	are	provided	by	the	array	of
doubles.	Transposing	the	column	vector	will	return	a	matrix	with	one	row	and	 	columns:

double[]	data	=	{1.2,	3.4,	5.6};	

RealMatrix	columnVector	=	new	Array2DRowRealMatrix(data);

System.out.println(columnVector);

/*	{{1.2},	{3.4},	{5.6}}	*/

RealMatrix	rowVector	=	columnVector.transpose();

System.out.println(rowVector);

/*	{{1.2,	3.4,	5.6}}	*/

When	a	matrix	of	dimension	 	is	transposed,	the	result	is	an	 	matrix.	Simply	put,	the	row
and	column	indices	 	and	 	are	reversed:

Note	that	the	matrix	transpose	operation	returns	a	new	matrix:

double[][]	data	=	{{1,	2,	3},	{4,	5,	6}};

RealMatrix	matrix	=	new	Array2DRowRealMatrix(data);

RealMatrix	transposedMatrix	=	matrix.transpose();

/*	{{1,	4},	{2,	5},	{3,	6}}	*/



Addition	and	Subtraction
The	addition	of	two	vectors	a	and	b	of	equal	length	 	results	in	a	vector	of	length	 	with	values	equal	to
the	element-wise	addition	of	the	vector	components:

The	result	is	a	new	RealVector	instance:

RealVector	aPlusB	=	vectorA.add(vectorB);

Similarly,	subtracting	two	RealVector	objects	of	equal	length	 	is	shown	here:

This	returns	a	new	RealVector	whose	values	are	the	element-wise	subtraction	of	the	vector	components:

RealVector	aMinusB	=	vectorA.subtract(vectorB);

Matrices	of	identical	dimensions	can	also	be	added	and	subtracted	similarly	to	vectors:

The	addition	or	subtraction	of	RealMatrix	objects	A	and	B	returns	a	new	Real Matrix	instance:

RealMatrix	aPlusB	=	matrixA.add(matrixB);

RealMatrix	aMinusB	=	matrixA.subtract(matrixB);



Length
The	length	of	a	vector	is	a	convenient	way	to	reduce	all	of	a	vector’s	components	to	one	number	and
should	not	be	confused	with	the	dimension	of	the	vector.	Several	definitions	of	vector	length	exist;	the	two
most	common	are	the	L1	norm	and	the	L2	norm.	The	L1	norm	is	useful,	for	example,	in	making	sure	that	a
vector	of	probabilities,	or	fractions	of	some	mixture,	all	add	up	to	one:

The	L1	norm,	which	is	less	common	than	the	L2	norm,	is	usually	referred	to	by	its	full	name,	L1	norm,	to
avoid	confusion:

double	norm	=	vector.getL1Norm();

The	L2	norm	is	usually	what	is	used	for	normalizing	a	vector.	Many	times	it	is	referred	to	as	the	norm	or
the	magnitude	of	the	vector,	and	it	is	mathematically	formulated	as	follows:

/*	calculate	the	L2	norm	of	a	vector	*/

double	norm	=	vector.getNorm();

TIP
People	often	ask	when	to	use	L1	or	L2	vector	lengths.	In	practical	terms,	it	matters	what	the	vector	represents.	In	some	cases,
you	will	be	collecting	counts	or	probabilities	in	a	vector.	In	that	case,	you	should	normalize	the	vector	by	dividing	by	its	sum	of
parts	(L1).	On	the	other	hand,	if	the	vector	contains	some	kind	of	coordinates	or	features,	then	you	will	want	to	normalize	the
vector	by	its	Euclidean	distance	(L2).

The	unit	vector	is	the	direction	that	a	vector	points,	so	called	because	it	has	been	scaled	by	its	L2	norm	to
have	a	length	=	1.	It	is	usually	denoted	with	 	and	is	calculated	as	follows:



The	RealVector.unitVector()	method	returns	a	new	RealVector	object:

/*	create	a	new	vector	that	is	the	unit	vector	of	vector	instance*/

RealVector	unitVector	=	vector.unitVector();

A	vector	can	also	be	transformed,	in	place,	to	a	unit	vector.	A	vector	v	will	be	permanently	changed	into
its	unit	vector	with	the	following:

/*	convert	a	vector	to	unit	vector	in-place	*/

vector.unitize();

We	can	also	calculate	the	norm	of	a	matrix	via	the	Frobenius	norm	represented	mathematically	as	the
square	root	of	the	sum	of	squares	of	all	elements:

This	is	rendered	in	Java	with	the	following:

double	matrixNorm	=	matrix.getFrobeniusNorm();



Distances
The	distance	between	any	two	vectors	a	and	b	may	be	calculated	in	several	ways.	The	L1	distance
between	a	and	b	is	shown	here:

double	l1Distance	=	vectorA.getL1Distance(vectorB);

The	L2	distance	(also	known	as	the	Euclidean	distance)	is	formulated	as

This	is	most	often	the	distance	between	vectors	that	is	called	for.	The	method
Vector.getDistance(RealVector	vector)	returns	the	Euclidean	distance:

double	l2Distance	=	vectorA.getDistance(vectorB);

The	cosine	distance	is	a	measure	between	–1	and	1	that	is	not	so	much	a	distance	metric	as	it	is	a
“similarity”	measure.	If	d	=	0,	the	two	vectors	are	perpendicular	(and	have	nothing	in	common).	If	d	=	1,
the	vectors	point	in	the	same	direction.	If	d	=	–1,	the	vectors	point	in	exact	opposite	directions.	The
cosine	distance	may	also	be	thought	of	as	the	dot	product	of	two	unit	vectors:

double	cosineDistance	=	vectorA.cosine(vectorB);

If	both	a	and	b	are	unit	vectors,	the	cosine	distance	is	just	their	inner	product:

and	the	Vector.dotProduct(RealVector	vector)	method	will	suffice:



/*	for	unit	vectors	a	and	b	*/

vectorA.unitize();

vectorB.unitize();

double	cosineDistance	=	vectorA.dotProduct(vectorB);



Multiplication
The	product	of	an	 	matrix	A	and	an	 	matrix	B	is	a	matrix	of	dimension	 .	The
only	dimension	that	must	batch	is	 	the	number	of	columns	in	A	and	the	number	of	rows	in	B:

The	value	of	each	element	(AB)ij	is	the	sum	of	the	multiplication	of	each	element	of	the	i-th	row	of	A	and
the	j-th	column	of	B,	which	is	represented	mathematically	as	follows:

Multiplying	a	matrix	A	by	a	matrix	B	is	achieved	with	this:

RealMatrix	matrixMatrixProduct	=	matrixA.multiply(matrixB);

Note	that	AB	≠	BA.	To	perform	BA,	either	do	so	explicitly	or	use	the	preMultiply	method.	Either	code
has	the	same	result.	However,	note	that	in	that	case,	the	number	of	columns	of	B	must	be	equal	to	the
number	of	rows	in	A:

/*	BA	explicitly	*/

RealMatrix	matrixMatrixProduct	matrixB.multiply(matrixA);

/*	BA	using	premultiply	*/

RealMatrix	matrixMatrixProduct	=	matrixA.preMultiply(matrixB);

Matrix	multiplication	is	also	commonly	called	for	when	multiplying	an	 	matrix	A	with	an	
	column	vector	x.	The	result	is	an	 	column	vector	b	such	that	Ax	=	b.	The	operation	is

performed	by	summing	the	multiplication	of	each	element	in	the	i-th	row	of	A	with	each	element	of	the
vector	x.	In	matrix	notation:



The	following	code	is	identical	to	the	preceding	matrix-matrix	product:

/*	Ax	results	in	a	column	vector	*/

RealMatrix	matrixVectorProduct	=	matrixA.multiply(columnVectorX);

We	often	wish	to	calculate	the	vector-matrix	product,	usually	denoted	as	xTA.	When	x	is	the	format	of	a
matrix,	we	can	perform	the	calculation	explicitly	as	follows:

/*	x^TA	explicitly	*/

RealMatrix	vectorMatrixProduct	=	columnVectorX.transpose().multiply(matrixA);

When	x	is	a	RealVector,	we	can	use	the	RealMatrix.preMultiply()	method:

/*	x^TA	with	preMultiply	*/

RealMatrix	vectorMatrixProduct	=	matrixA.preMultiply(columnVectorX);

When	performing	Ax,	we	often	want	the	result	as	a	vector	(as	opposed	to	a	column	vector	in	a	matrix).	If
x	is	a	RealVector	type,	a	more	convenient	way	to	perform	Ax	is	with	this:

/*	Ax	*/

RealVector	matrixVectorProduct	=	matrixA.operate(vectorX);



Inner	Product
The	inner	product	(also	known	as	the	dot	product	or	scalar	product)	is	a	method	for	multiplying	two
vectors	of	the	same	length.	The	result	is	a	scalar	value	that	is	formulated	mathematically	with	a	raised	dot
between	the	vectors	as	follows:

For	RealVector	objects	vectorA	and	vectorB,	the	dot	product	is	as	follows:

double	dotProduct	=	vectorA.dotProduct(vectorB);

If	the	vectors	are	in	matrix	form,	you	can	use	matrix	multiplication,	because	a	·	b	=	abT,	where	the	left
side	is	the	dot	product	and	the	right	side	is	the	matrix	multiplication:

The	matrix	multiplication	of	column	vectors	a	and	b	returns	a	1	×	1	matrix:

/*	matrixA	and	matrixB	are	both	mx1	column	vectors	*/

RealMatrix	innerProduct	=	matrixA.transpose().multiply(matrixB);

/*	the	result	is	stored	in	the	only	entry	for	the	matrix	*/

double	dotProduct	=	innerProduct.getEntry(0,0);

Although	matrix	multiplication	may	not	seem	practical	compared	to	the	dot	product,	it	illustrates	an
important	relationship	between	vector	and	matrix	operations.



Outer	Product
The	outer	product	between	a	vector	a	of	dimension	 	and	a	vector	b	of	dimension	 	returns	a	new
matrix	of	dimension	 :

Keep	in	mind	that	abT	has	the	dimension	 	and	does	not	equal	baT,	which	has	dimension	 .
The	RealMatrix.outerProduct()	method	conserves	this	order	and	returns	a	RealMatrix	instance	with
the	appropriate	dimension:

/*	outer	product	of	vector	a	with	vector	b	*/

RealMatrix	outerProduct	=	vectorA.outerProduct(vectorB);

If	the	vectors	are	in	matrix	form,	the	outer	product	can	be	calculated	with	the	RealMatrix.multiply()
method	instead:

/*	matrixA	and	matrixB	are	both	nx1	column	vectors	*/

RealMatrix	outerProduct	=	matrixA.multiply(matrixB.transpose());



Entrywise	Product
Also	known	as	the	Hadamard	product	or	the	Schur	product,	the	entrywise	product	multiplies	each	element
of	one	vector	by	each	element	of	another	vector.	Both	vectors	must	have	the	same	dimension,	and	their
resultant	vector	is	therefore	of	the	same	dimension:

The	method	RealVector.ebeMultiply(RealVector)	performs	this	operation,	in	which	ebe	is	short	for
element	by	element.

/*	compute	the	entrywise	multiplication	of	vector	a	and	vector	b	*/

RealVector	vectorATimesVectorB	=	vectorA.ebeMultiply(vectorB);

A	similar	operation	for	entrywise	division	is	performed	with	RealVector.ebeDivision(RealVector).

CAUTION
Entrywise	products	should	not	be	confused	with	matrix	products	(including	inner	and	outer	products).	In	most	algorithms,	matrix
products	are	called	for.	However,	the	entrywise	product	will	come	in	handy	when,	for	example,	you	need	to	scale	an	entire	vector
by	a	corresponding	vector	of	weights.

The	Hadamard	product	is	not	currently	implemented	for	matrix-matrix	products	in	Apache	Commons
Math,	but	we	can	easily	do	so	in	a	naive	way	with	the	following:

public	class	MatrixUtils	{

				public	static	RealMatrix	ebeMultiply(RealMatrix	a,	RealMatrix	b)	{

								int	rowDimension	=	a.getRowDimension();

								int	columnDimension	=	a.getColumnDimension();

								RealMatrix	output	=	new	Array2DRowRealMatrix(rowDimension,

												columnDimension);

								for	(int	i	=	0;	i	<	rowDimension;	i++)	{

												for	(int	j	=	0;	j	<	columnDimension;	j++)	{

																output.setEntry(i,	j,	a.getEntry(i,	j)	*	b.getEntry(i,	j));

												}

								}

								return	output;

				}

}

This	can	be	implemented	as	follows:

/*	element-by-element	product	of	matrixA	and	matrixB	*/

RealMatrix	hadamardProduct	=	MatrixUtils.ebeMultiply(matrixA,	matrixB);



Compound	Operations
You	will	often	run	into	compound	forms	involving	several	vectors	and	matrices,	such	as	xTAx,	which
results	in	a	singular,	scalar	value.	Sometimes	it	is	convenient	to	work	the	calculation	in	chunks,	perhaps
even	out	of	order.	In	this	case,	we	can	first	compute	the	vector	v	=	Ax	and	then	find	the	dot	(inner)
product	x	·	v:

double[]	xData	=	{1,	2,	3};

double[][]	aData	=	{{1,	3,	1},	{0,	2,	0},	{1,	5,	3}};

RealVector	vectorX	=	new	ArrayRealVector(xData);

RealMatrix	matrixA	=	new	Array2DRowRealMatrix(aData);

double	d	=	vectorX.dotProduct(matrixA.operate(vectorX));

//	d	=	78

Another	method	is	to	first	multiply	the	vector	by	the	matrix	by	using	RealMatrix.premultiply()	and
then	compute	the	inner	product	(dot	product)	between	the	two	vectors:

double	d	=	matrixA.premultiply(vecotrX).dotProduct(vectorX);

//d	=	78

If	the	vectors	are	in	matrix	format	as	column	vectors,	we	can	exclusively	use	matrix	methods.	However,
note	that	the	result	will	be	a	matrix	as	well:

RealMatrix	matrixX	=	new	Array2DRowRealMatrix(xData);

/*	result	is	1x1	matrix	*/

RealMatrix	matrixD	=	matrixX.transpose().multiply(matrixA).multiply(matrixX);

d	=	matrixD.getEntry(0,	0);	//	78



Affine	Transformation
A	common	procedure	is	to	transform	a	vector	x	of	length	 	by	applying	a	linear	map	matrix	A	of
dimensions	 	and	a	translation	vector	b	of	length	 ,	where	the	relationship

is	known	as	an	affine	transformation.	For	convenience,	we	can	set	z	=	f(x),	move	the	vector	x	to	the
other	side,	and	define	W	=	AT	with	dimensions	 	such	that

In	particular,	we	see	this	form	quite	a	bit	in	learning	and	prediction	algorithms,	where	it	is	important	to
note	that	x	is	a	multidimensional	vector	of	one	observation,	not	a	one-dimensional	vector	of	many
observations.	Written	out,	this	looks	like	the	following:

We	can	also	express	the	affine	transform	of	an	 	matrix	X	with	this:

B	has	the	dimension	 :

In	most	cases,	we	would	like	the	translation	matrix	to	have	equivalent	rows	of	the	vector	b	of	length	 	so
that	the	expression	is	then

where	h	is	an	 -length	column	vector	of	ones.	Note	that	the	outer	product	of	these	two	vectors	creates	an
	matrix.	Written	out,	the	expression	then	looks	like	this:



This	is	such	an	important	function	that	we	will	include	it	in	our	MatrixOperations	class:

public	class	MatrixOperations	{

...

				public	static	RealMatrix	XWplusB(RealMatrix	x,	RealMatrix	w,	RealVector	b)	{

								RealVector	h	=	new	ArrayRealVector(x.getRowDimension(),	1.0);

								return	x.multiply(w).add(h.outerProduct(b));

				}

...

}



Mapping	a	Function
Often	we	need	to	map	a	function	 	over	the	contents	of	a	vector	z	such	that	the	result	is	a	new	vector	y	of
the	same	shape	as	z:

The	Commons	Math	API	contains	a	method	RealVector.map(UnivariateFunction	function),	which
does	exactly	that.	Most	of	the	standard	and	some	other	useful	functions	are	included	in	Commons	Math
that	implement	the	UnivariateFunction	interface.	It	is	invoked	with	the	following:

//	map	exp	over	vector	input	into	new	vector	output

RealVector	output	=	input.map(new	Exp());

It	is	straightforward	to	create	your	own	UnivariateFunction	classes	for	forms	that	are	not	included	in
Commons	Math.	Note	that	this	method	does	not	alter	the	input	vector.	If	you	would	like	to	alter	the	input
vector	in	place,	use	this:

//	map	exp	over	vector	input	rewriting	its	values

input.mapToSelf(new	Exp());

On	some	occasions,	we	want	to	apply	a	univariate	function	to	each	entry	of	a	matrix.	The	Apache
Commons	Math	API	provides	an	elegant	way	to	do	this	that	works	efficiently	even	for	sparse	matrices.	It
is	the	RealMatrix.walkInOptimizedOrder(Real MatrixChangingVisitor	visitor)	method.	Keep
in	mind,	there	are	other	options	here.	We	can	visit	each	entry	of	the	matrix	in	either	row	or	column	order,
which	may	be	useful	(or	required)	for	some	operations.	However,	if	we	only	want	to	update	each	element
of	a	matrix	independently,	then	using	the	optimized	order	is	the	most	adaptable	algorithm	because	it	will
work	for	matrices	with	either	2D	array,	block,	or	sparse	storage.	The	first	step	is	to	build	a	class	(which
acts	as	the	mapping	function)	that	extends	the	RealMatrixChangingVisitor	interface	and	implement	the
required	methods:

public	class	PowerMappingFunction	implements	RealMatrixChangingVisitor	{

				private	double	power;

				public	PowerMappingFunction(double	power)	{

								this.power	=	power;

				}

				@Override

				public	void	start(int	rows,	int	columns,	int	startRow,	int	endRow,

								int	startColumn,	int	endColumn)	{

								//	called	once	before	start	of	operations	...	not	needed	here

				}

				@Override

				public	double	visit(int	row,	int	column,	double	value)	{

								return	Math.pow(value,	power);

				}

				@Override

				public	double	end()	{

								//	called	once	after	all	entries	visited	...	not	needed	here

								return	0.0;

				}



Then	to	map	the	required	function	over	an	existing	matrix,	pass	an	instance	of	the	class	to	the
walkInOptimizedOrder()	method	like	so:

/*	each	element	'x'	of	matrix	is	updated	in	place	with	x^1.2	*/

matrix.walkInOptimizedOrder(new	PowerMappingFunction(1.2));

We	can	also	utilize	Apache	Commons	Math	built-in	analytic	functions	that	implement	the
UnivariateFunction	interface	to	easily	map	any	existing	function	over	each	entry	of	a	matrix:

public	class	UnivariateFunctionMapper	implements	RealMatrixChangingVisitor	{

				

				UnivariateFunction	univariateFunction;

				public	UnivariateFunctionMapper(UnivariateFunction	univariateFunction)	{

								this.univariateFunction	=	univariateFunction;

				}

				

				@Override

				public	void	start(int	rows,	int	columns,	int	startRow,	int	endRow,

												int	startColumn,	int	endColumn)	{

								//NA

				}

				@Override

				public	double	visit(int	row,	int	column,	double	value)	{

								return	univariateFunction.value(value);

				}

				@Override

				public	double	end()	{

								return	0.0;

				}	

}

This	interface	can	be	utilized,	for	example,	when	extending	the	affine	transformation	static	method	in	the
preceding	section:

public	class	MatrixOperations	{

...

				public	static	RealMatrix	XWplusB(RealMatrix	X,	RealMatrix	W,	RealVector	b,

												UnivariateFunction	univariateFunction)	{

								RealMatrix	z	=	XWplusB(X,	W,	b);

								z.walkInOptimizedOrder(new	UnivariateFunctionMapper(univariateFunction));

								return	z;

				}

...

}

So,	for	example,	if	we	wanted	to	map	the	sigmoid	(logistic)	function	over	an	affine	transformation,	we
would	do	this:

//	for	input	matrix	x,	weight	w	and	bias	b,	mapping	sigmoid	over	all	entries

MatrixOperations.XWplusB(x,	w,	b,	new	Sigmoid());

There	are	a	couple	of	important	things	to	realize	here.	First,	note	there	is	also	a	preserving	visitor	that
visits	each	element	of	a	matrix	but	does	not	change	it.	The	other	thing	to	take	note	of	are	the	methods.	The
only	method	you	will	really	need	to	implement	is	the	visit()	method,	which	should	return	the	new	value
for	each	input	value.	Both	the	start()	and	end()	methods	are	not	needed	(particularly	in	this	case).	The
start()	method	is	called	once	before	the	start	of	all	the	operations.	So,	for	example,	say	we	need	the



matrix	determinant	in	our	further	calculations.	We	could	calculate	it	once	in	the	start()	method,	store	it
as	a	class	variable,	and	then	use	it	later	in	the	operations	of	visit().	Similarly,	end()	is	called	once
after	all	the	elements	have	been	visited.	We	could	use	this	for	tallying	a	running	metric,	total	sites	visited,
or	even	an	error	signal.	In	any	case,	the	value	of	end()	is	returned	by	the	method	when	everything	is
done.	You	are	not	required	to	include	any	real	logic	in	the	end()	method,	but	at	the	very	least	you	can
return	a	valid	double	such	as	0.0,	which	is	nothing	more	than	a	placeholder.	Note	the	method
RealMatrix.walkInOptimizedOrder(RealMatrixChangingVisitor	visitor,	int	startRow,

int	endRow,	int	startColumn,	int	endColumn),	which	operates	only	on	a	submatrix	whose	bounds
are	indicated	by	the	signature.	Use	this	when	you	want	to	update,	in-place,	only	a	specific	rectangular
block	of	a	matrix	and	leave	the	rest	unchanged.



Decomposing	Matrices
Considering	what	we	know	about	matrix	multiplication,	it	is	easy	to	imagine	that	any	matrix	can	be
decomposed	into	several	other	matrices.	Decomposing	a	matrix	into	parts	enables	the	efficient	and
numerically	stable	calculation	of	important	matrix	properties.	For	example,	although	the	matrix	inverse
and	the	matrix	determinant	have	explicit,	algebraic	formulas,	they	are	best	calculated	by	first
decomposing	the	matrix	and	then	taking	the	inverse.	The	determinant	comes	directly	from	a	Cholesky	or
LU	decomposition.	All	matrix	decompositions	here	are	capable	of	solving	linear	systems	and	as	a
consequence	make	the	matrix	inverse	available.	Table	2-1	lists	the	properties	of	various	matrix
decompositions	as	implemented	by	Apache	Commons	Math.

Table	2-1.	Matrix	decomposition	properties

Decomposition Matrix	Type Solver Inverse Determinant

Cholesky Symmetric	positive	definite Exact ✓ ✓
Eigen Square Exact ✓ ✓
LU Square Exact ✓ ✓
QR Any Least	squares ✓
SVD Any Least	squares ✓



Cholesky	Decomposition
A	Cholesky	decomposition	of	a	matrix	A	decomposes	the	matrix	such	that	A	=	LLT,	where	L	is	a	lower
triangular	matrix,	and	the	upper	triangle	(above	the	diagonal)	is	zero:

CholeskyDecomposition	cd	=	new	CholeskyDecomposition(matrix);

RealMatrix	l	=	cd.getL();

A	Cholesky	decomposition	is	valid	only	for	symmetric	matrices.	The	main	use	of	a	Cholesky	is	in	the
computation	of	random	variables	for	the	multinormal	distribution.



LU	Decomposition
The	lower-upper	(LU)	decomposition	decomposes	a	matrix	A	into	a	lower	diagonal	matrix	L	and	an
upper	diagonal	matrix	U	such	that	A	=	LU:

LUDecomposition	lud	=	new	LUDecomposition(matrix);

RealMatrix	u	=	lud.getU();

RealMatrix	l	=	lud.getL();

The	LU	decomposition	is	useful	in	solving	systems	of	linear	equations	in	which	the	number	of	unknowns
is	equal	to	the	number	of	equations.



QR	Decomposition
The	QR	decomposition	decomposes	the	matrix	A	into	an	orthogonal	matrix	of	column	unit	vectors	Q	and
an	upper	triangular	matrix	R	such	that

QRDecomposition	qrd	=	new	QRDecomposition(matrix);

RealMatrix	q	=	lud.getQ();

RealMatrix	r	=	lud.getR();

One	of	the	main	uses	of	the	QR	decomposition	(and	analogous	decompositions)	is	in	the	calculation	of
eigenvalue	decompositions	because	each	column	of	Q	is	orthogonal.	The	QR	decomposition	is	also
useful	in	solving	overdetermined	systems	of	linear	equations.	This	is	usually	the	case	for	datasets	in
which	the	number	of	data	points	(rows)	is	greater	than	the	dimension	(number	of	columns).	One	advantage
of	using	the	QR	decomposition	solver	(as	opposed	to	SVD)	is	the	easy	access	to	the	errors	on	the	solution
parameters	that	can	be	directly	calculated	from	R.



Singular	Value	Decomposition
The	singular	value	decomposition	(SVD)	decomposes	the	m	×	n	matrix	A	such	that	A	=	UΣVT,	where	U
is	an	m	×	m	unitary	matrix,	S	is	an	m	×	n	diagonal	matrix	with	real,	non-negative	values,	and	V	is	an	n	×	n
unitary	matrix.	As	unitary	matrices,	both	U	and	V	have	the	property	UUT	=	I,	where	I	is	the	identity
matrix.

In	many	cases,	 ;	the	number	of	rows	in	a	matrix	will	be	greater	than	or	equal	to	the	number	of
columns.	In	this	case,	there	is	no	need	to	calculate	the	full	SVD.	Instead,	a	more	efficient	calculation
called	thin	SVD	can	be	implemented,	where	U	is	m	×	n,	S	is	n	×	n,	and	V	is	n	×	n.	As	a	practical	matter,
there	may	also	be	cases	when	 	so	we	can	then	just	use	the	smaller	of	the	two	dimensions:	

.	The	Apache	Commons	Math	implementation	uses	that	practice:

/*	matrix	is	mxn	and	p	=	min(m,n)	*/

SingularValueDecomposition	svd	=	new	SingularValueDecomposition(matrix);

RealMatrix	u	=	svd.getU();	//	m	x	p

RealMatrix	s	=	svd.getS();	//	p	x	p

RealMatrix	v	=	svd.getV();	//	p	x	n

/*	retrieve	values,	in	decreasing	order,	from	the	diagonal	of	S	*/

double[]	singularValues	=	svd.getSingularValues();

/*	can	also	get	covariance	of	input	matrix	*/

double	minSingularValue	=	0;//	0	or	neg	value	means	all	sv	are	used

RealMatrix	cov	=	svd.getCovariance(minSingularValue);

The	singular	value	decomposition	has	several	useful	properties.	Like	the	eigen	decomposition,	it	is	used
to	reduce	the	matrix	A	to	a	smaller	dimension,	keeping	only	the	most	useful	of	them.	Also,	as	a	linear
solver,	the	SVD	works	on	any	shape	of	matrix	and	in	particular,	is	stable	on	underdetermined	systems	in
which	the	number	of	dimensions	(columns)	is	much	greater	than	the	number	of	data	points	(rows).



Eigen	Decomposition
The	goal	of	the	eigen	decomposition	is	to	reorganize	the	matrix	A	into	a	set	of	independent	and	orthogonal
column	vectors	called	eigenvectors.	Each	eigenvector	has	an	associated	eigenvalue	that	can	be	used	to
rank	the	eigenvectors	from	most	important	(highest	eigenvalue)	to	least	important	(lowest	eigenvalue).	We
can	then	choose	to	use	only	the	most	significant	eigenvectors	as	representatives	of	matrix	A.	Essentially,
we	are	asking,	is	there	some	way	to	completely	(or	mostly)	describe	matrix	A,	but	with	fewer
dimensions?

For	a	matrix	A,	a	solution	exists	for	a	vector	x	and	a	constant	λ	such	that	Ax	=	λx.	There	can	be	multiple
solutions	(i.e.,	x,	λ	pairs).	Taken	together,	all	of	the	possible	values	of	lambda	are	known	as	the
eigenvalues,	and	all	corresponding	vectors	are	known	as	the	eigenvectors.	The	eigen	decomposition	of	a
symmetric,	real	matrix	A	is	expressed	as	A	=	VDVT.	The	results	are	typically	formulated	as	a	diagonal	m
×	m	matrix	D,	in	which	the	eigenvalues	are	on	the	diagonal	and	an	m	×	m	matrix	V	whose	column	vectors
are	the	eigenvectors.

Several	methods	exist	for	performing	an	eigenvalue	decomposition.	In	a	practical	sense,	we	usually	need
only	the	simplest	form	as	implemented	by	Apache	Commons	Math	in	the
org.apache.commons.math3.linear.EigenDecomposition	class.	The	eigenvalues	and	eigenvectors
are	sorted	by	descending	order	of	the	eigenvalues.	In	other	words,	the	first	eigenvector	(the	zeroth	column
of	matrix	Q)	is	the	most	significant	eigenvector.

double[][]	data	=	{{1.0,	2.2,	3.3},	{2.2,	6.2,	6.3},	{3.3,	6.3,	5.1}};								

RealMatrix	matrix	=	new	Array2DRowRealMatrix(data);

/*	compute	eigenvalue	matrix	D	and	eigenvector	matrix	V	*/

EigenDecomposition	eig	=	new	EigenDecomposition(matrix);

								

/*	The	real	(or	imag)	eigenvalues	can	be	retrieved	as	an	array	of	doubles	*/

double[]	eigenValues	=	eig.getRealEigenvalues();

/*	Individual	eigenvalues	can	be	also	be	accessed	directly	from	D	*/

double	firstEigenValue	=	eig.getD().getEntry(0,	0);

								

/*	The	first	eigenvector	can	be	accessed	like	this	*/

RealVector	firstEigenVector	=	eig.getEigenvector(0);

/*	Remember	that	eigenvectors	are	just	the	columns	of	V	*/

RealVector	firstEigenVector	=	eig.getV.getColumn(0);



Determinant
The	determinant	is	a	scalar	value	calculated	from	a	matrix	A	and	is	most	often	seen	as	a	component	as
the	multinormal	distribution.	The	determinant	of	matrix	A	is	denoted	as	|A|.	The	Cholesky,	eigen,	and	LU
decomposition	classes	provide	access	to	the	determinant:

/*	calculate	determinant	from	the	Cholesky	decomp	*/

double	determinant	=	new	CholeskyDecomposition(matrix).getDeterminant();

/*	calculate	determinant	from	the	eigen	decomp	*/

double	determinant	=	new	EigenDecomposition(matrix).getDeterminant();

/*	calculate	determinant	from	the	LU	decomp	*/

double	determinant	=	new	LUDecomposition(matrix).getDeterminant();



Inverse
The	inverse	of	a	matrix	is	similar	to	the	concept	of	inverting	a	real	number	ℜ,	where	ℜ(1/ℜ)	=	1.	Note
that	this	can	also	be	written	as	ℜℜ–1	=	1.	Similarly,	the	inverse	of	a	matrix	A	is	denoted	by	A–1	and	the
relation	exists	AA–1	=	I,	where	I	is	the	identity	matrix.	Although	formulas	exist	for	directly	computing	the
inverse	of	a	matrix,	they	are	cumbersome	for	large	matrices	and	numerically	unstable.	Each	of	the
decomposition	methods	available	in	Apache	Commons	Math	implements	a	DecompositionSolver
interface	that	requires	a	matrix	inverse	in	its	solution	of	linear	systems.	The	matrix	inverse	is	then
retrieved	from	the	accessor	method	of	the	DecompositionSolver	class.	Any	of	the	decomposition
methods	provides	a	matrix	inverse	if	the	matrix	type	is	compatible	with	the	method	used:

/*	the	inverse	of	a	square	matrix	from	Cholesky,	LU,	Eigen,	QR,

						or	SVD	decompositions	*/

RealMatrix	matrixInverse	=	new	LUDecomposition(matrix).getSolver().getInverse();

The	matrix	inverse	can	also	be	calculated	from	the	singular	value	decomposition:

/*	the	inverse	of	a	square	or	rectangular	matrix	from	QR	or	SVD	decomposition	*/

RealMatrix	matrixInverse	=	

new	SingularValueDecomposition(matrix).getSolver().getInverse();

Or	the	QR	decomposition:

/*	OK	on	rectangular	matrices,	but	error	on	non-singular	matrices	*/

RealMatrix	matrixInverse	=	new	QRDecomposition(matrix).getSolver().getInverse();

A	matrix	inverse	is	used	whenever	matrices	are	moved	from	one	side	of	the	equation	to	the	other	via
division.	Another	common	application	is	in	the	computation	of	the	Mahalanobis	distance	and,	by
extension,	for	the	multinormal	distribution.



Solving	Linear	Systems
At	the	beginning	of	this	chapter,	we	described	the	system	XW	=	Y	as	a	fundamental	concept	of	linear
algebra.	Often,	we	also	want	to	include	an	intercept	or	offset	term	 	not	dependent	on	 	such	that

There	are	two	options	for	including	the	intercept	term,	the	first	of	which	is	to	add	a	column	of	1s	to	X	and
a	row	of	unknowns	to	W.	It	does	not	matter	which	column-row	pair	is	chosen	as	long	as	 	in	this
case.	Here	we	choose	the	last	column	of	X	and	the	last	row	of	W:

Note	that	in	this	case,	the	columns	of	W	are	independent.	Therefore,	we	are	simply	finding	 	separate
linear	models,	except	for	the	convenience	of	performing	the	operation	in	one	piece	of	code:

/*	data	*/

double[][]	xData	=	{{0,	0.5,	0.2},	{1,	1.2,	.9},	{2,	2.5,	1.9},	{3,	3.6,	4.2}};

double[][]	yData	=	{{-1,	-0.5},	{0.2,	1},	{0.9,	1.2},	{2.1,	1.5}};

/*	create	X	with	offset	as	last	column	*/

double[]	ones	=	{1.0,	1.0,	1.0,	1.0};

int	xRows	=	4;

int	xCols	=	3;

RealMatrix	x	=	new	Array2DRowRealMatrix(xRows,	xCols	+	1);

x.setSubMatrix(xData,	0,	0);

x.setColumn(3,	ones);	//	4th	column	is	index	of	3	!!!

/*	create	Y	*/

RealMatrix	y	=	new	Array2DRowRealMatrix(yData);

								

/*	find	values	for	W	*/

SingularValueDecomposition	svd	=	new	SingularValueDecomposition(x);

RealMatrix	solution	=	svd.getSolver().solve(y);

System.out.println(solution);

//	{{1.7,3.1},{-0.9523809524,-2.0476190476},

//		{0.2380952381,-0.2380952381},{-0.5714285714,0.5714285714}}

Given	the	values	for	the	parameters,	the	solution	for	the	system	of	equations	is	as	follows:

The	second	option	for	including	the	intercept	is	to	realize	that	the	preceding	algebraic	expression	is
equivalent	to	the	affine	transformation	of	a	matrix	described	earlier	in	this	chapter:



This	form	of	a	linear	system	has	the	advantage	that	we	do	not	need	to	resize	any	matrices.	In	the	previous
example	code	resizing	the	matrices	occurs	only	one	time,	and	this	is	not	too	much	of	a	burden.	However,
in	Chapter	5,	we	will	tackle	a	multilayered	linear	model	(deep	network)	in	which	resizing	matrices	will
be	cumbersome	and	inefficient.	In	that	case,	it	is	much	more	convenient	to	represent	the	linear	model	in
algebraic	terms,	where	W	and	b	are	completely	separate.



Chapter	3.	Statistics

Applying	the	basic	principles	of	statistics	to	data	science	provides	vital	insight	into	our	data.	Statistics	is
a	powerful	tool.	Used	correctly,	it	enables	us	to	be	sure	of	our	decision-making	process.	However,	it	is
easy	to	use	statistics	incorrectly.	One	example	is	Anscombe’s	quartet	(Figure	3-1),	which	demonstrates
how	four	distinct	datasets	can	have	nearly	identical	statistics.	In	many	cases,	a	simple	plot	of	the	data	can
alert	us	right	away	to	what	is	really	going	on	with	the	data.	In	the	case	of	Anscombe’s	quartet,	we	can
instantly	pick	out	these	features:	in	the	upper-left	panel,	 	and	 	appear	to	be	linear,	but	noisy.	In	the
upper-right	panel,	we	see	that	 	and	 	form	a	peaked	relationship	that	is	nonlinear.	In	the	lower-left
panel,	 	and	 	are	precisely	linear,	except	for	one	outlier.	The	lower-right	panel	shows	that	 	is
statistically	distributed	for	 	and	that	there	is	possibly	an	outlier	at	 .	Despite	how
different	each	plot	looks,	when	we	subject	each	set	of	data	to	standard	statistical	calculations,	the	results
are	identical.	Clearly,	our	eyes	are	the	most	sophisticated	data-processing	tool	in	existence!	However,	we
cannot	always	visualize	data	in	this	manner.	Many	times	the	data	will	be	multidimensional	in	 	and
perhaps	 	as	well.	While	we	can	plot	each	dimension	of	 	versus	 	to	get	some	ideas	on	the
characteristics	of	the	dataset,	we	will	be	missing	all	of	the	dependencies	between	the	variates	in	 .



Figure	3-1.	Anscombe’s	quartet



The	Probabilistic	Origins	of	Data
At	the	beginning	of	the	book,	we	defined	a	data	point	as	a	recorded	event	that	occurs	at	that	exact	time
and	place.	We	can	represent	a	datum	(data	point)	with	the	dirac	delta	δ(x),	which	is	equal	to	zero
everywhere	except	at	x	=	0,	where	the	value	is	∞.	We	can	generalize	a	little	further	with	 ,
which	means	that	the	dirac	delta	is	equal	to	zero	everywhere	except	at	 ,	where	the	value	is	∞.	We
can	ask	the	question,	is	there	something	driving	the	occurrence	of	the	data	points?



Probability	Density
Sometimes	data	arrives	from	a	well-known,	generating	source	that	can	be	described	by	a	functional	form	

,	where	typically	the	form	is	modified	by	some	parameters	 	and	is	denoted	as	 .	Many

forms	of	 	exist,	and	most	of	them	come	from	observations	of	behavior	in	the	natural	world.	We	will
explore	some	of	the	more	common	ones	in	the	next	few	sections	for	both	continuous	and	discrete	random-
number	distributions.

We	can	add	together	all	those	probabilities	for	each	position	as	a	function	of	the	variate	x:

Or	for	a	discrete	integer	variate,	k:

Note	that	f(x)	can	be	greater	than	1.	Probability	density	is	not	the	probability,	but	rather,	the	local	density.
To	determine	the	probability,	we	must	integrate	the	probability	density	over	an	arbitrary	range	of	x.
Typically,	we	use	the	cumulative	distribution	function	for	this	task.



Cumulative	Probability
We	require	that	probability	distribution	functions	(PDFs)	are	properly	normalized	such	that	integrating
over	all	space	returns	a	100	percent	probability	that	the	event	has	occurred:

However,	we	can	also	calculate	the	cumulative	probability	that	an	event	will	occur	at	point	x,	given	that	it
has	not	occurred	yet:

Note	that	the	cumulative	distribution	function	is	monotonic	(always	increasing	as	x	increases)	and	is
(almost)	always	a	sigmoid	shape	(a	slanted	S).	Given	that	an	event	has	not	occurred	yet,	what	is	the
probability	that	it	will	occur	at	x?	For	large	values	of	x,	P	=	1.	We	impose	this	condition	so	that	we	can
be	sure	that	the	event	definitely	happens	in	some	defined	interval.



Statistical	Moments

Although	integrating	over	a	known	probability	distribution	 	gives	the	cumulative	distribution
function	(or	1	if	over	all	space),	adding	in	powers	of	x	are	what	defines	the	statistical	moments.	For	a
known	statistical	distribution,	the	statistical	moment	is	the	expectation	of	order	k	around	a	central	point	c
and	can	be	evaluated	via	the	following:

Special	quantity,	the	expectation	or	average	value	of	x,	occurs	at	c	=	0	for	the	first	moment	k	=	1:

The	higher-order	moments,	k	>	1,	with	respect	to	this	mean	are	known	as	the	central	moments	about	the
mean	and	are	related	to	descriptive	statistics.	They	are	expressed	as	follows:

The	second,	third,	and	fourth	central	moments	about	the	mean	have	useful	statistical	meanings.	We	define
the	variance	 	as	the	second	moment:

Its	square	root	is	the	standard	deviation	 ,	a	measure	of	how	far	the	data	is	distributed	from	the	mean.
The	skewness	 	is	a	measure	of	how	asymmetric	the	distribution	is	and	is	related	to	the	third	central
moment	about	the	mean:



The	kurtosis	is	a	measure	of	how	fat	the	tails	of	the	distribution	are	and	is	related	to	the	fourth	central
moment	about	the	mean:

In	the	next	section,	we	will	examine	the	normal	distribution,	one	of	the	most	useful	and	ubiquitous
probability	distributions.	The	normal	distribution	has	a	kurtosis	kappa	=	3.	Because	we	often	compare
things	to	the	normal	distribution,	the	term	excess	kurtosis	is	defined	by	the	following:

We	now	define	kurtosis	(the	fatness	of	the	tails)	in	reference	to	the	normal	distribution.	Note	that	many
references	to	the	kurtosis	are	actually	referring	to	the	excess	kurtosis.	The	two	terms	are	used
interchangeably.

Higher-order	moments	are	possible	and	have	varied	usage	and	applications	on	the	fringe	of	data	science.
In	this	book,	we	stop	at	the	fourth	moment.



Entropy
In	statistics,	entropy	is	the	measure	of	the	unpredictability	of	the	information	contained	within	a
distribution.	For	a	continuous	distribution,	the	entropy	is	as	follows:

For	a	discrete	distribution,	entropy	is	shown	here:

In	an	example	plot	of	entropy	(Figure	3-2),	we	see	that	entropy	is	lowest	when	the	probability	of	a	0	or	1
is	high,	and	the	entropy	is	maximal	at	p	=	0.5,	where	both	0	and	1	are	just	as	likely.



Figure	3-2.	Entropy	for	a	Bernoulli	distribution

We	can	also	examine	the	entropy	between	two	distributions	by	using	cross	entropy,	where	p(x)	is	taken	as
the	true	distribution,	and	q(x)	is	the	test	distribution:

And	in	the	discrete	case:



Continuous	Distributions
Some	well-known	forms	of	distributions	are	well	characterized	and	get	frequent	use.	Many	distributions
have	arisen	from	real-world	observations	of	natural	phenomena.	Regardless	of	whether	the	variates	are
described	by	real	or	integer	numbers,	indicating	respective	continuous	and	discrete	distributions,	the
basic	principles	for	determining	the	cumulative	probability,	statistical	moments,	and	statistical	measures
are	the	same.

Uniform

The	uniform	distribution	has	a	constant	probability	density	over	its	supported	range	 	,	and
is	zero	everywhere	else.	In	fact,	this	is	just	a	formal	way	of	describing	the	random,	real-number	generator
on	the	interval	[0,1]	that	you	are	familiar	with,	such	as	java.util.Random.nextDouble().	The	default
constructor	sets	a	lower	bound	a	=	0.0	and	an	upper	bound	of	b	=	1.0.	The	probability	density	of	a
uniform	distribution	is	expressed	graphically	as	a	top	hat	or	box	shape,	as	shown	in	Figure	3-3.

Figure	3-3.	Uniform	PDF	with	parameters	 	and	

This	has	the	following	mathematical	form:



The	cumulative	distribution	function	(CDF)	looks	like	Figure	3-4.

Figure	3-4.	Uniform	CDF	with	parameters	 	and	

This	has	the	form	shown	here:



In	the	uniform	distribution,	the	mean	and	the	variance	are	not	directly	specified,	but	are	calculated	from
the	lower	and	upper	bounds	with	the	following:

To	invoke	the	uniform	distribution	with	Java,	use	the	class	UniformDistribution(a,	b),	where	the
lower	and	upper	bounds	are	specified	in	the	constructor.	Leaving	the	constructor	arguments	blank	invokes
the	standard	uniform	distribution,	where	a	=	0.0	and	b	=	1.0.

UniformRealDistribution	dist	=	new	UniformRealDistribution();

double	lowerBound	=	dist.getSupportLowerBound();	//	0.0

double	upperBound	=	dist.getSupportUpperBound();	//	1.0

double	mean	=	dist.getNumericalMean();

double	variance	=	dist.getNumericalVariance();

double	standardDeviation	=	Math.sqrt(variance);

double	probability	=	dist.density(0.5));

double	cumulativeProbability	=	dist.cumulativeProbability(0.5);

double	sample	=	dist.sample();	//	e.g.,	0.023

double[]	samples	=	dist.sample(3);	//	e.g.,	{0.145,	0.878,	0.431}

Note	that	we	could	reparameterize	the	uniform	distribution	with	 	and	 ,	where
	is	the	center	point	(the	mean)	and	 	is	the	distance	from	the	center	to	either	the	lower	or	upper	bound.

The	variance	then	becomes	 	with	standard	deviation	 	.	The	PDF	is	then

and	the	CDF	is



To	express	the	uniform	distribution	in	this	centralized	form,	calculate	 	and	
and	enter	them	into	the	constructor:

/*	initialize	centralized	uniform	with	mean	=	10	and	half-width	=	2	*/

double	mean	=	10.0

double	hw	=	2.0;

double	a	=	mean	-	hw;

double	b	=	mean	+	hw;

UniformRealDistribution	dist	=	new	UniformRealDistribution(a,	b);

At	this	point,	all	of	the	methods	will	return	the	correct	results	without	any	further	alterations.	This
reparameterization	around	the	mean	can	be	useful	when	trying	to	compare	distributions.	The	centered,
uniform	distribution	is	naturally	extended	by	the	normal	distribution	(or	other	symmetric	peaked
distributions).

Normal
The	most	useful	and	widespread	distribution,	found	in	so	many	diverse	use	cases,	is	the	normal
distribution.	Also	known	as	the	Gaussian	distribution	or	the	bell	curve,	this	distribution	is	symmetric
about	a	central	peak	whose	width	can	vary.	In	many	cases	when	we	refer	to	something	as	having	an
average	value	with	plus	or	minus	a	certain	amount,	we	are	referring	to	the	normal	distribution.	For
example,	for	exam	grades	in	a	classroom,	the	interpretation	is	that	a	few	people	do	really	well	and	a	few
people	do	really	badly,	but	most	people	are	average	or	right	in	the	middle.	In	the	normal	distribution,	the
center	of	the	distribution	is	the	maximum	peak	and	is	also	the	mean	of	the	distribution,	μ.	The	width	is
parameterized	by	σ	and	is	the	standard	deviation	of	the	values.	The	distribution	supports	all	values	of	

	and	is	shown	in	Figure	3-5.



Figure	3-5.	Normal	PDF	with	parameters	 	and	

The	probability	density	is	expressed	mathematically	as	follows:

The	cumulative	distribution	function	is	shaped	like	Figure	3-6.



Figure	3-6.	Normal	CDF	with	parameters	 	and	

This	is	expressed	with	the	error	function:

This	is	invoked	via	Java,	where	the	default	constructor	creates	the	standard	normal	distribution	with	
	and	 .	Otherwise,	pass	the	parameters	μ	and	σ	to	the	constructor:

/*	initialize	with	default	mu=0	and	sigma=1	*/

NormalDistribution	dist	=	new	NormalDistribution();

double	mu	=	dist.getMean();	//	0.0

double	sigma	=	dist.getStandardDeviation();	//	1.0

double	mean	=	dist.getNumericalMean();	//	0.0

double	variance	=	dist.getNumericalVariance();	//	1.0

double	lowerBound	=	dist.getSupportLowerBound();	//	-Infinity

double	upperBound	=	dist.getSupportUpperBound();	//	Infinity

/*	probability	at	a	point	x	=	0.0	*/

double	probability	=	dist.density(0.0);

/*	calc	cum	at	x=0.0	*/

double	cumulativeProbability	=	dist.cumulativeProbability(0.0);

double	sample	=	dist.sample();	//	1.0120001



double	samples[]	=	dist.sample(3);	//	{.0102,	-0.009,	0.011}

Multivariate	normal
The	normal	distribution	can	be	generalized	to	higher	dimensions	as	the	multivariate	normal	(a.k.a.
multinormal)	distribution.	The	variate	x	and	the	mean	μ	are	vectors,	while	the	covariance	matrix	Σ
contains	the	variances	on	the	diagonal	and	the	covariances	as	i,j	pairs.	In	general,	the	multivariate	normal
has	a	squashed	ball	shape	and	is	symmetric	about	the	mean.	This	distribution	is	perfectly	round	(or
spherical)	for	unit	normals	when	the	covariances	are	0	and	variances	are	equivalent.	An	example	of	the
distribution	of	random	points	is	shown	in	Figure	3-7.

Figure	3-7.	Random	points	generated	from	2D	multinormal	distribution

The	probability	distribution	function	of	a	 	dimensional	multinormal	distribution	takes	the	form

Note	that	if	the	covariance	matrix	has	a	determinant	equal	to	zero	such	that	 ,	then	f(x)	blows
up	to	infinity.	Also	note	that	when	 ,	it	is	impossible	to	calculate	the	required	inverse	of	the



covariance	 .	In	this	case,	the	matrix	is	termed	singular.	Apache	Commons	Math	will	throw	the
following	exception	if	this	is	the	case:

org.apache.commons.math3.linear.SingularMatrixException:	matrix	is	singular

What	causes	a	covariance	matrix	to	become	singular?	This	is	a	symptom	of	co-linearity,	in	which	two	(or
more)	variates	of	the	underlying	data	are	identical	or	linear	combinations	of	each	other.	In	other	words,	if
we	have	three	dimensions	and	the	covariance	matrix	is	singular,	it	may	mean	that	the	distribution	of	data
could	be	better	described	in	two	or	even	one	dimension.

There	is	no	analytical	expression	for	the	CDF.	It	can	be	attained	via	numerical	integration.	However,
Apache	Commons	Math	supports	only	univariate	numerical	integration.

The	multivariate	normal	takes	means	and	covariance	as	arrays	of	doubles,	although	you	can	still	use
RealVector,	RealMatrix,	or	Covariance	instances	with	their	getData()	methods	applied:

double[]	means	=	{0.0,	0.0,	0.0};

double[][]	covariances	=	{{1.0,	0.0,	0.0},{0.0,	1.0,	0.0},	{0.0,	0.0,	1.0}};

MultivariateNormalDistribution	dist	=	

		new	MultivariateNormalDistribution(means,	covariances);

/*	probability	at	point	x	=	{0.0,	0.0,	0.0}	*/

double	probability	=	dist.density(x);	//	0.1

double[]	mn	=	dist.getMeans();

double[]	sd	=	dist.getStandardDeviations();

/*	returns	a	RealMatrix	but	can	be	converted	to	doubles	*/

double[][]	covar	=	dist.getCovariances().getData();

double[]	sample	=	dist.sample();

double[][]	samples	=	dist.sample(3);

Note	the	special	case	in	which	the	covariance	is	a	diagonal	matrix.	This	occurs	when	the	variables	are
completely	independent.	The	determinant	of	Σ	is	just	the	product	of	its	diagonal	elements	 .	The	inverse
of	a	diagonal	matrix	is	yet	another	diagonal	matrix	with	each	term	expressed	as	 .	The	PDF	then
reduces	to	the	product	of	univariate	normals:

As	in	the	case	of	the	unit	normal,	a	unit	multivariate	normal	has	a	mean	vector	of	0s	and	a	covariance
matrix	equal	to	the	identity	matrix,	a	diagonal	matrix	of	1s.

Log	normal
The	log	normal	distribution	is	related	to	the	normal	distribution	when	the	variate	x	is	distributed
logarithmically	—	that	is,	ln(x)	is	normally	distributed.	If	we	substitute	ln(x)	for	x	in	the	normal
distribution,	we	get	the	log	normal	distribution.	There	are	some	subtle	differences.	Because	the	logarithm



is	defined	only	for	positive	x,	this	distribution	has	support	on	the	interval	 ,	where	x	>	0.
The	distribution	is	asymmetric	with	a	peak	near	the	smaller	values	of	x	and	a	long	tail	stretching,
infinitely,	to	higher	values	of	x,	as	shown	in	Figure	3-8.

Figure	3-8.	Log	normal	PDF	with	parameters	 	and	

The	location	(scale)	parameter	m	and	the	shape	parameter	s	rise	to	the	PDF:

Here,	m	and	s	are	the	respective	mean	and	standard	deviation	of	the	logarithmically	distributed	variate	X.
The	CDF	looks	like	Figure	3-9.



Figure	3-9.	Log	normal	CDF	with	parameters	 	and	

This	has	the	following	form:

Unlike	the	normal	distribution,	the	m	is	neither	the	mean	(average	value)	nor	the	mode	(most	likely	value
or	the	peak)	of	the	distribution.	This	is	because	of	the	larger	number	of	values	stretching	off	to	positive
infinity.	The	mean	and	variance	of	X	are	calculated	from	the	following:



We	can	invoke	a	log	normal	distribution	with	this:

/*	initialize	with	default	m=0	and	s=1	*/

NormalDistribution	dist	=	new	NormalDistribution();

double	lowerBound	=	dist.getSupportLowerBound();	//	0.0

double	upperBound	=	dist.getSupportUpperBound();	//	Infinity

double	scale	=	dist.getScale();	//	0.0

double	shape	=	dist.getShape():	//	1.0

double	mean	=	dist.getNumericalMean();	//	1.649

double	variance	=	dist.getNumericalVariance();	//	4.671

double	density	=	dist.density(1.0);	//	0.3989

double	cumulativeProbability	=	dist.cumulativeProbability(1.0);	//	0.5

double	sample	=	dist.sample();	//	0.428

double[]	samples	=	dist.sample(3);	//	{0.109,	5.284,	2.032}

Where	do	we	see	the	log	normal	distribution?	The	distribution	of	ages	in	a	human	population,	and
(sometimes)	in	particle	size	distribution.	Note	that	the	log	normal	distribution	arises	from	a	multiplicative
effect	of	many	independent	distributions.

Empirical
In	some	cases	you	have	data,	but	do	not	know	the	distribution	that	the	data	came	from.	You	can	still
approximate	a	distribution	with	your	data	and	even	calculate	probability	density,	cumulative	probability,
and	random	numbers!	The	first	step	in	working	with	an	empirical	distribution	is	to	collect	the	data	into
bins	of	equal	size	spanning	the	range	of	the	dataset.	The	class	EmpiricalDistribution	can	input	an
array	of	doubles	or	can	load	a	file	locally	or	from	a	URL.	In	those	cases,	data	must	be	one	entry	per	line:

/*	get	2500	random	numbers	from	a	standard	normal	distribution	*/

NormalDistribution	nd	=	new	NormalDistribution();

double[]	data	=	nd.sample(2500);

								

//	default	constructor	assigns	bins	=	1000

//	better	to	try	numPoints	/	10

EmpiricalDistribution	dist	=	new	EmpiricalDistribution(25);

dist.load(data);	//	can	also	load	from	file	or	URL	!!!

double	lowerBound	=	dist.getSupportLowerBound();	//	0.5

double	upperBound	=	dist.getSupportUpperBound();	//	10.1

double	mean	=	dist.getNumericalMean();	//	5.48

double	variance	=	dist.getNumericalVariance();	//	15.032

double	density	=	dist.density(1.0);	//	0.357

double	cumulativeProbability	=	dist.cumulativeProbability(1.0);	//	0.153

double	sample	=	dist.sample();	//	e.g.,	1.396

double[]	samples	=	dist.sample(3);	//	e.g.,	[10.098,	0.7934,	9.981]

We	can	plot	the	data	from	an	empirical	distribution	as	a	type	of	bar	chart	called	a	histogram,	shown	in
Figure	3-10.



Figure	3-10.	Histogram	of	random	normal	with	parameters	 	and	

The	code	for	a	histogram	uses	the	BarChart	plot	from	Chapter	1,	except	that	we	add	the	data	directly
from	the	EmpiricalDistribution	instance	that	contains	a	List	of	all	the	SummaryStatistics	of	each
bin:

/*	for	an	existing	EmpiricalDistribution	with	loaded	data	*/

List<SummaryStatistics>	ss	=	dist.getBinStats();

int	binNum	=	0;

for	(SummaryStatistics	s	:	ss)	{

				/*	adding	bin	counts	to	the	XYChart.Series	instance	*/

				series.getData().add(new	Data(Integer.toString(binNum++),	s.getN()));

}

//	render	histogram	with	JavaFX	BarChart



Discrete	Distributions
There	are	several	discrete	random-number	distributions.	These	support	only	integers	as	values,	which	are
designated	by	k.

Bernoulli
The	Bernoulli	distribution	is	the	most	basic	and	perhaps	most	familiar	distribution	because	it	is
essentially	a	coin	flip.	In	a	“heads	we	win,	tails	we	lose”	situation,	the	coin	has	two	possible	states:	tails
(k	=	0)	and	heads	(k	=	1),	where	k	=	1	is	designated	to	have	a	probability	of	success	equal	to	p.	If	the	coin
is	perfect,	then	p	=	1/2;	it	is	equally	likely	to	get	heads	as	it	is	tails.	But	what	if	the	coin	is	“unfair,”
indicating	p	≠	1/2?	The	probability	mass	function	(PMF)	can	then	be	represented	as	follows:

The	cumulative	distribution	function	is	shown	here:

The	mean	and	variance	are	calculated	with	the	following:

Note	that	the	Bernoulli	distribution	is	related	to	the	binomial	distribution,	where	the	number	of	trials
equals	n	=	1.	The	Bernoulli	distribution	is	implemented	with	the	class	BinomialDistribution(1,	p)
setting	n	=	1:

BinomialDistribution	dist	=	new	BinomialDistribution(1,	0.5);

int	lowerBound	=	dist.getSupportLowerBound();	//	0

int	upperBound	=	dist.getSupportUpperBound();	//	1

int	numTrials	=	dist.getNumberOfTrials();	//	1

double	probSuccess	=	dist.getProbabilityOfSuccess();	//	0.5

double	mean	=	dist.getNumericalMean();	//	0.5

double	variance	=	dist.getNumericalVariance();	//	0.25

//	k	=	1

double	probability	=	dist.probability(1);	//	0.5



double	cumulativeProbability	=	dist.cumulativeProbability(1);	//	1.0

int	sample	=	dist.sample();	//	e.g.,	1

int[]	samples	=	dist.sample(3);	//	e.g.,	[1,	0,	1]

Binomial
If	we	perform	multiple	Bernoulli	trials,	we	arrive	at	the	binomial	distribution.	For	n	Bernoulli	trials,	each
with	probability	of	success	p,	the	distribution	of	successes	k	has	the	form	in	Figure	3-11.

Figure	3-11.	Binomial	PMF	with	parameters	 	and	

The	probability	mass	function	is	expressed	with	the	following:

The	CDF	looks	like	Figure	3-12.



Figure	3-12.	Binomial	CDF	with	parameters	 	and	

The	CDF	takes	the	form

I1-p	is	the	regularized	incomplete	beta	function.	The	mean	and	variance	are	computed	via	the	following:

In	Java,	BinomialDistribution	has	two	required	arguments	in	the	constructor:	n,	the	number	of	trials;
and	p,	the	probability	of	success	for	one	trial:

BinomialDistribution	dist	=	new	BinomialDistribution(10,	0.5);

int	lowerBound	=	dist.getSupportLowerBound();	//	0

int	upperBound	=	dist.getSupportUpperBound();	//	10



int	numTrials	=	dist.getNumberOfTrials();	//	10

double	probSuccess	=	dist.getProbabilityOfSuccess();	//	0.5

double	mean	=	dist.getNumericalMean();	//	5.0

double	variance	=	dist.getNumericalVariance();	//	2.5

//	k	=	1

double	probability	=	dist.probability(1);	//	0.00977

double	cumulativeProbability	=	dist.cumulativeProbability(1);	//	0.0107

int	sample	=	dist.sample();	//	e.g.,	9

int[]	samples	=	dist.sample(3);	//	e.g.,	[4,	5,	4]

Poisson
The	Poisson	distribution	is	often	used	to	describe	discrete,	independent	events	that	occur	rarely.	The
number	of	events	are	the	integers	 	that	occur	over	some	interval	with	a	constant	rate	
gives	rise	to	the	PMF	in	Figure	3-13.

Figure	3-13.	Poisson	PMF	with	parameters	

The	form	of	the	PMF	is



Figure	3-14	shows	the	CDF.

Figure	3-14.	Poisson	CDF	with	parameters	

The	CDF	is	expressed	via

The	mean	and	variance	are	both	equivalent	to	the	rate	parameter	 	as



The	Poisson	is	implemented	with	the	parameter	 	in	the	constructor	and	has	an	upper	bound	at
Integer.MAX	k	=	232	–	1	=	2147483647:

PoissonDistribution	dist	=	new	PoissonDistribution(3.0);

int	lowerBound	=	dist.getSupportLowerBound();	//	0

int	upperBound	=	dist.getSupportUpperBound();	//	2147483647

double	mean	=	dist.getNumericalMean();	//	3.0

double	variance	=	dist.getNumericalVariance();	//	3.0

//	k	=	1

double	probability	=	dist.probability(1);	//	0.1494

double	cumulativeProbability	=	dist.cumulativeProbability(1);	//	0.1991

int	sample	=	dist.sample();	//	e.g.,	1

int[]	samples	=	dist.sample(3);	//	e.g.,	[2,	4,	1]



Characterizing	Datasets
Once	we	have	a	dataset,	the	first	thing	we	should	do	is	understand	the	character	of	the	data.	We	should
know	the	numerical	limits,	whether	any	outliers	exist,	and	whether	the	data	has	a	shape	like	one	of	the
known	distribution	functions.	Even	if	we	have	no	idea	what	the	underlying	distribution	is,	we	can	still
check	whether	two	separate	datasets	come	from	the	same	(unknown)	distribution.	We	can	also	check	how
related	(or	unrelated)	each	pair	of	variates	is	via	covariance/correlation.	If	our	variate	x	comes	with	a
response	y,	we	can	check	a	linear	regression	to	see	whether	the	most	basic	of	relationships	exists
between	x	and	y.	Most	of	the	classes	in	this	section	are	best	for	small,	static	datasets	that	can	fit	entirely
into	memory,	because	most	of	the	methods	in	these	classes	rely	on	stored	data.	In	the	following	section,
we	deal	with	data	that	is	so	large	(or	inconvenient)	that	it	cannot	fit	in	memory.



Calculating	Moments
In	the	previous	section	where	we	discussed	statistical	moments,	formulas	were	presented	for	calculating
moments	and	their	various	statistical	outcomes	when	we	know	the	probability	distribution	function	f(x).
When	dealing	with	real	data,	we	usually	do	not	know	the	form	of	f(x)	and	so	we	must	estimate	the
moments	numerically.	The	moment	calculations	have	another	critical	feature:	robustness.	Estimating
statistical	quantities	can	result	in	numerical	error	as	extreme	values	are	encountered.	Using	the	method	of
updating	moments,	we	can	avoid	numerical	imprecision.

Sample	moments
In	the	case	of	real	data,	where	the	true	statistical	distribution	function	may	not	be	known,	we	can	estimate
the	central	moments:

Here,	the	estimated	mean	 	is	calculated	as	follows:

Updating	moments
Without	the	factor	1/n	for	the	estimate	of	the	central	moment,	the	form	is	as	follows:

In	this	particular	form,	the	unnormalized	moments	can	be	split	into	parts	via	straightforward	calculations.
This	gives	us	a	great	advantage	that	the	unnormalized	moments	can	be	calculated	in	parts,	perhaps	in
different	processes	or	even	on	different	machines	entirely,	and	we	can	glue	back	together	the	pieces	later.
Another	advantage	is	that	this	formulation	is	less	sensitive	to	extreme	values.	The	combined	unnormalized
central	moment	for	the	two	chunks	is	shown	here:



	is	the	difference	between	the	means	of	the	two	data	chunks.	Of	course,	you	will	also
need	a	method	for	merging	the	means,	because	this	formula	is	applicable	only	for	k	>	1.	Given	any	two
data	chunks	with	known	means	and	counts,	the	total	count	is	 ,	and	the	mean	is	robustly
calculated	as	follows:

If	one	of	the	data	chunks	has	only	one	point	x,	then	the	formulation	for	combining	the	unnormalized	central
moments	is	simplified:

Here,	 	is	the	difference	between	the	added	value	x	and	the	mean	value	of	the	existing	data
chunk.

In	the	next	section,	we	will	see	how	these	formulas	are	used	to	robustly	calculate	important	properties	to
statistics.	They	become	essential	in	distributed	computing	applications	when	we	wish	to	break	statistical
calculations	into	many	parts.	Another	useful	application	is	storeless	calculations	in	which,	instead	of
performing	calculations	on	whole	arrays	of	data,	we	keep	track	of	moments	as	we	go,	and	update	them
incrementally.



Descriptive	Statistics
We	instantiate	DescriptiveStatistics	with	no	argument	to	add	values	later,	or	start	it	out	with	an	array
of	doubles	(and	then	can	still	add	values	later).	Although	you	can	use	StatUtils	static	methods,	this	is
not	Java-like,	and	although	there	is	nothing	wrong	with	it,	it’s	probably	wiser	to	use
DescriptiveStatistics	instead.	Some	of	the	formulas	in	this	section	are	not	stable,	and	a	more	robust
method	is	described	in	the	next	section.	Indeed,	some	of	those	methods	are	used	in	the	descriptive	stats
methods	as	well.	In	Table	3-1,	we	display	the	data	from	Anscombe’s	quartet	for	further	analysis	in	this
chapter.

Table	3-1.	Anscombe’s	quartet	data

x1 y1 x2 y2 x3 y3 x4 y4

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

We	can	then	create	DescriptiveStatistics	classes	with	these	datasets:

/*	stats	for	Anscombe's	y1	*/

DescriptiveStatistics	descriptiveStatistics	=	new	DescriptiveStatistics();

descriptiveStatistics.addValue(8.04);

descriptiveStatistics.addValue(6.95);

//keep	adding	y1	values

However,	you	may	already	have	all	the	data	that	you	need,	or	maybe	it’s	just	an	initial	set	that	you	will
add	to	later.	You	can	always	add	more	values	with	ds.addValue(double	value)	if	needed.	At	this
point,	you	can	display	a	report	of	stats	with	either	a	call	to	the	method,	or	by	printing	the	class	directly:

System.out.println(descriptiveStatistics);

This	produces	the	following	result:

DescriptiveStatistics:

n:	11

min:	4.26

max:	10.84

mean:	7.500909090909091

std	dev:	2.031568135925815

median:	7.58

skewness:	-0.06503554811157437

kurtosis:	-0.5348977343727395



All	of	these	quantities	(and	more)	are	available	via	their	specific	getters,	as	explained	next.

Count
The	simplest	statistic	is	the	count	of	the	number	of	points	in	the	dataset:

long	count	=	descriptiveStatistics.getN();

Sum
We	can	also	access	the	sum	of	all	values:

double	sum	=	descriptiveStatistics.getSum();

Min
To	retrieve	the	minimum	value	dataset,	we	use	this:

double	min	=	descriptiveStatistics.getMin();

Max
To	retrieve	the	maximum	value	in	the	dataset,	we	use	this:

double	max	=	descriptiveStatistics.getMax();

Mean
The	average	value	of	the	sample	or	mean	is	calculated	directly:

However,	this	calculation	is	sensitive	to	extreme	values,	and	given	 ,	the	mean	can	be
updated	for	each	added	value	x:

Commons	Math	uses	the	update	formula	for	mean	calculation	when	the	getMean()	method	is	called:

double	mean	=	descriptiveStatistics.getMean();

Median
The	middle	value	of	a	sorted	(ascending)	dataset	is	the	median.	The	advantage	is	that	it	minimizes	the



problem	of	extreme	values.	While	there	is	no	direct	calculation	of	the	median	in	Apache	Commons	Math,
it	is	easy	to	calculate	by	taking	the	average	of	the	two	middle	members	if	the	array	length	is	even;	and
otherwise,	just	return	the	middle	member	of	the	array:

//	sort	the	stored	values

double[]	sorted	=	descriptiveStatistics.getSortedValues();

int	n	=	sorted.length;

double	median	=	(n	%	2	==	0)	?	(sorted[n/2-1]+sorted[n/2])/2.0	:	sorted[n/2];

Mode
The	mode	is	the	most	likely	value.	The	concept	of	mode	does	not	make	sense	if	the	values	are	doubles,
because	there	is	probably	only	one	of	each.	Obviously,	there	will	be	exceptions	(e.g.,	when	many	zeros
occur)	or	if	the	dataset	is	large	and	the	numerical	precision	is	small	(e.g.,	two	decimal	places).	The	mode
has	two	use	cases	then:	if	the	variate	being	considered	is	discrete	(integer),	then	the	mode	can	be	useful,
as	in	dataset	four	of	Anscombe’s	quartet.	Otherwise,	if	you	have	created	bins	from	empirical	distribution,
the	mode	is	the	max	bin.	However,	you	should	consider	the	possibility	that	your	data	is	noisy	and	the	bin
counts	may	erroneously	identify	an	outlier	as	a	mode.The	StatUtils	class	contains	several	static
methods	useful	for	statistics.	Here	we	utilize	its	mode	method:

//	if	there	is	only	one	max,	it's	stored	in	mode[0]

//	if	there	is	more	than	one	value	that	has	equally	high	counts

//	then	values	are	stored	in	mode	in	ascending	order

double[]	mode	=	StatUtils.mode(x4);

//mode[0]	=	8.0

double[]	test	=	{1.0,	2.0,	2.0,	3.0,	3.0,	4.0}

//mode[0]	=	2.0

//mode[1]	=	3.0

Variance
The	variance	is	a	measure	of	how	much	the	data	is	spread	out	and	is	always	a	positive,	real	number
greater	than	or	equal	to	zero.	If	all	values	of	x	are	equal,	the	variance	will	be	zero.	Conversely,	a	larger
spread	of	numbers	will	correspond	to	a	larger	variance.	The	variance	of	a	known	population	of	data
points	is	equivalent	to	the	second	central	moment	about	the	mean	and	is	expressed	as	follows:

However,	most	of	the	time	we	do	not	have	all	of	the	data	—	we	are	only	sampling	from	a	larger	(possibly
unknown)	dataset	and	so	a	correction	for	this	bias	is	needed:



This	form	is	known	as	the	sample	variance	and	is	most	often	the	variance	we	will	use.	You	may	note	that
the	sample	variance	can	be	expressed	in	terms	of	the	second-order,	unnormalized	moment:

As	with	the	mean	calculation,	the	Commons	Math	variance	is	calculated	using	the	update	formula	for	the
second	unnormalized	moment	for	a	new	data	point	 ,	an	existing	mean	 	and	the	newly	updated	mean	
:

Here,	 	.

Most	of	the	time	when	the	variance	is	required,	we	are	asking	for	the	bias-corrected,	sample	variance
because	our	data	is	usually	a	sample	from	some	larger,	possibly	unknown,	set	of	data:

double	variance	=	descriptiveStatistics.getVariance()

However,	it	is	also	straightforward	to	retrieve	the	population	variance	if	it	is	required:

double	populationVariance	=	descriptiveStatistics.getPopulationVariance();

Standard	deviation

The	variance	is	difficult	to	visualize	because	it	is	on	the	order	of	x2	and	usually	a	large	number	compared
to	the	mean.	By	taking	the	square	root	of	the	variance,	we	define	this	as	the	standard	deviation	s.	This	has
the	advantage	of	being	in	the	same	units	of	the	variates	and	the	mean.	It	is	therefore	helpful	to	use	things
like	μ	+–	σ,	which	can	indicate	how	much	the	data	deviates	from	the	mean.	The	standard	deviation	can	be
explicitly	calculated	with	this:



However,	in	practice,	we	use	the	update	formulas	to	calculate	the	sample	variance,	returning	the	standard
deviation	as	the	square	root	of	the	sample	variance	when	required:

double	standardDeviation	=	descriptiveStatistics.getStandardDeviation();

Should	you	require	the	population	standard	deviation,	you	can	calculate	this	directly	by	taking	the	square
root	of	the	population	variance.

Error	on	the	mean
While	it	is	often	assumed	that	the	standard	deviation	is	the	error	on	the	mean,	this	is	not	true.	The	standard
deviation	describes	how	the	data	is	spread	around	the	average.	To	calculate	the	accuracy	of	the	mean
itself,	sx,	we	use	the	standard	deviation:

And	we	use	some	simple	Java:

double	meanErr	=	descriptiveStatistics.getStandardDeviation()	/	

																								Math.sqrt(descriptiveStatistics.getN());

Skewness
The	skewness	measures	how	asymmetrically	distributed	the	data	is	and	can	be	either	a	positive	or
negative	real	number.	A	positive	skew	signifies	that	most	of	the	values	leans	toward	the	origin	(x	=	0),
while	a	negative	skew	implies	the	values	are	distributed	away	(to	right).	A	skewness	of	0	indicates	that
the	data	is	perfectly	distributed	on	either	side	of	the	data	distribution'’s	peak	value.	The	skewness	can	be
calculated	explicitly	as	follows:

However,	a	more	robust	calculation	of	the	skewness	is	achieved	by	updating	the	third	central	moment:

Then	you	calculate	the	skewness	when	it	is	called	for:



The	Commons	Math	implementation	iterates	over	the	stored	dataset,	incrementally	updating	M3	and	then
performing	the	bias	correction,	and	returns	the	skewness:

double	skewness	=	descriptiveStatistics.getSkewness();

Kurtosis
The	kurtosis	is	a	measure	of	how	“tailed”	a	distribution	of	data	is.	The	sample	kurtosis	estimate	is	related
to	the	fourth	central	moment	about	the	mean	and	is	calculated	as	shown	here:

This	can	be	simplified	as	follows:

A	kurtosis	at	or	near	0	signifies	that	the	data	distribution	is	extremely	narrow.	As	the	kurtosis	increases,
extreme	values	coincide	with	long	tails.	However,	we	often	want	to	express	the	kurtosis	as	related	to	the
normal	distribution	(which	has	a	kurtosis	=	3).	We	can	then	subtract	this	part	and	call	the	new	quantity	the
excess	kurtosis,	although	in	practice	most	people	just	refer	to	the	excess	kurtosis	as	the	kurtosis.	In	this
definition,	κ	=	0	implies	that	the	data	has	the	same	peak	and	tail	shape	as	a	normal	distribution.	A	kurtosis
higher	than	3	is	called	leptokurtic	and	has	wider	tails	than	a	normal	distribution.	When	κ	is	less	than	3,
the	distribution	is	said	to	be	platykurtic	and	the	distribution	has	few	values	in	the	tail	(less	than	the
normal	distribution).	The	excess	kurtosis	calculation	is	as	follows:

As	in	the	case	for	the	variance	and	skewness,	the	kurtosis	is	calculated	by	updating	the	fourth
unnormalized	central	moment.	For	each	point	added	to	the	calculation,	M4	can	be	updated	with	the



following	equation	as	long	as	the	number	of	points	n	>=	4.	At	any	point,	the	skew	can	be	computed	from
the	current	value	of	M4:

The	default	calculation	returned	by	getKurtosis	is	the	excess	kurtosis	definition.	This	can	be	checked	by
implementing	the	class	org.apache.commons.math3 .stat.descriptive.moment.Kurtosis,	which	is
called	by	getKurtosis():

double	kurtosis	=	descriptiveStatistics.getKurtosis();



Multivariate	Statistics
So	far,	we	have	addressed	the	situation	where	we	are	concerned	with	one	variate	at	a	time.	The	class
DescriptiveStatistics	takes	only	one-dimensional	data.	However,	we	usually	have	several
dimensions,	and	it	is	not	uncommon	to	have	hundreds	of	dimensions.	There	are	two	options:	the	first	is	to
use	the	MultivariateStatisticalSummary	class,	which	is	described	in	the	next	section.	If	you	can	live
without	skewness	and	kurtosis,	that	is	your	best	option.	If	you	do	require	the	full	set	of	statistical
quantities,	your	best	bet	is	to	implement	a	Collection	instance	of	DescriptiveStatistics	objects.
First	consider	what	you	want	to	keep	track	of.	For	example,	in	the	case	of	Anscombe’s	quartet,	we	can
collect	univariate	statistics	with	the	following:

DescriptiveStatistics	descriptiveStatisticsX1	=	new	DescriptiveStatistics(x1);

DescriptiveStatistics	descriptiveStatisticsX2	=	new	DescriptiveStatistics(x2);

...	

List<DescriptiveStatistics>	dsList	=	new	ArrayList<>();

dsList.add(descriptiveStatisticsX1);

dsList.add(descriptiveStatisticsX2);

...

You	can	then	iterate	through	the	List,	calling	statistical	quantities	or	even	the	raw	data:

for(DescriptiveStatistics	ds	:	dsList)	{

				

				double[]	data	=	ds.getValues();

				//	do	something	with	data	or

				

				double	kurtosis	=	ds.getKurtosis();

				//	do	something	with	kurtosis

}

If	the	dataset	is	more	complex	and	you	know	you	will	need	to	call	specific	columns	of	data	in	your
ensuing	analysis,	use	Map	instead:

DescriptiveStatistics	descriptiveStatisticsX1	=	new	DescriptiveStatistics(x1);

DescriptiveStatistics	descriptiveStatisticsY1	=	new	DescriptiveStatistics(y1);

DescriptiveStatistics	descriptiveStatisticsX2	=	new	DescriptiveStatistics(x2);

Map<String,	DescriptiveStatistics>	dsMap	=	new	HashMap<>();

dsMap.put("x1",	descriptiveStatisticsX1);

dsMap.put("y1",	descriptiveStatisticsY1);

dsMap.put("x2",	descriptiveStatisticsX2);

Of	course,	now	it	is	trivial	to	call	a	specific	quantity	or	dataset	by	its	key:

double	x1Skewness	=	dsMap.get("x1").getSkewness();

double[]	x1Values	=	dsMap.get("x1").getValues();

This	will	become	cumbersome	for	a	large	number	of	dimensions,	but	you	can	simplify	this	process	if	the
data	was	already	stored	in	multidimensional	arrays	(or	matrices)	where	you	loop	over	the	column	index.
Also,	you	may	have	already	stored	your	data	in	the	List	or	Map	of	the	data	container	classes,	so
automating	the	process	of	building	a	multivariate	Collection	of	DescriptiveStatistics	objects	will
be	straightforward.	This	is	particularly	efficient	if	you	already	have	a	data	dictionary	(a	list	of	variable
names	and	their	properties)	from	which	to	iterate	over.	If	you	have	high-dimensional	numeric	data	of	one
type	and	it	already	exists	in	a	matrix	of	double	array	form,	it	might	be	easier	to	use	the



MultivariateSummaryStatistics	class	in	the	next	section.



Covariance	and	Correlation
The	covariance	and	correlation	matrices	are	symmetric,	square	m	×	m	matrices	with	dimension	m	equal	to
the	number	columns	in	the	original	dataset.

Covariance
The	covariance	is	the	two-dimensional	equivalent	of	the	variance.	It	measures	how	two	variates,	in
combination,	differ	from	their	means.	It	is	calculated	as	shown	here:

Just	as	in	the	case	of	the	one-dimensional,	statistical	sample	moments,	we	note	that	the	quantity

can	be	expressed	as	an	incremental	update	to	the	co-moment	of	the	pair	of	variables	xi	and	xj,	given	a
known	means	and	counts	for	the	existing	dimensions:

Then	the	covariance	can	be	calculated	at	any	point:

The	code	to	calculate	the	covariance	is	shown	here:

Covariance	cov	=	new	Covariance();

/*	examples	using	Anscombe's	Quartet	data	*/

double	cov1	=	cov.covariance(x1,	y1);	//	5.501

double	cov2	=	cov.covariance(x2,	y2);	//	5.499

double	cov3	=	cov.covariance(x3,	y3);	//	5.497

double	cov4	=	cov.covariance(x4,	y5);	//	5.499



If	you	already	have	the	data	in	a	2D	array	of	doubles	or	a	RealMatrix	instance,	you	can	pass	them
directly	to	the	constructor	like	this:

//	double[][]	myData	or	RealMatrix	myData

Covariance	covObj	=	new	Covariance(myData);

//	cov	contains	covariances	and	can	be	accessed

//	from	RealMatrix.get(i,j)	retrieve	elements

RealMatrix	cov	=	covObj.getCovarianceMatrix();

Note	that	the	diagonal	of	the	covariance	matrix	 	is	just	the	variance	of	column	i	and	therefore	the
square	root	of	the	diagonal	of	the	covariance	matrix	is	the	standard	deviation	of	each	dimension	of	data.
Because	the	population	mean	is	usually	not	known,	we	use	the	biased	covariance	with	the	sample	mean.	If
we	did	know	the	population	mean,	the	unbiased	correction	factor	1/n	would	be	used	to	calculate	the
unbiased	covariance:

Pearson’s	correlation
The	Pearson	correlation	coefficient	is	related	to	covariance	via	the	following,	and	is	a	measure	of	how
likely	two	variates	are	to	vary	together:

The	correlation	coefficient	takes	a	value	between	–1	and	1,	where	1	indicates	that	the	two	variates	are
nearly	identical.	–1	indicates	that	they	are	opposites.	In	Java,	there	are	once	again	two	options,	but	using
the	default	constructor,	we	get	this:

PearsonsCorrelation	corr	=	new	PearsonsCorrelation();

/*	examples	using	Anscombe's	Quartet	data	*/

double	corr1	=	corr.correlation(x1,	y1));	//	0.816

double	corr2	=	corr.correlation(x2,	y2));	//	0.816

double	corr3	=	corr.correlation(x3,	y3));	//	0.816

double	corr4	=	corr.correlation(x4,	y4));	//	0.816

However,	if	we	already	have	data,	or	a	Covariance	instance,	we	can	use	the	following:

//	existing	Covariance	cov

PearsonsCorrelation	corrObj	=	new	PearsonsCorrelation(cov);

//	double[][]	myData	or	RealMatrix	myData

PearsonsCorrelation	corrObj	=	new	PearsonsCorrelation(myData);

//	from	RealMatrix.get(i,j)	retrieve	elements

RealMatrix	corr	=	corrObj.getCorrelationMatrix();



WARNING
Correlation	is	not	causation!	One	of	the	dangers	in	statistics	is	the	interpretation	of	correlation.	When	two	variates	have	a	high
correlation,	we	tend	to	assume	that	this	implies	that	one	variable	is	responsible	for	causing	the	other.	This	is	not	the	case.	In	fact,
all	you	can	assume	is	that	you	can	reject	the	idea	that	the	variates	have	nothing	to	do	with	each	other.	You	should	view
correlation	as	a	fortunate	coincidence,	not	a	foundational	basis	for	the	underlying	behavior	of	the	system	being	studied.



Regression
Often	we	want	to	find	the	relationship	between	our	variates	X	and	their	responses	 .	We	are	trying	to	find

a	set	of	values	for	 	such	that	y	=	X .	In	the	end,	we	want	three	things:	the	parameters,	their	errors,	and	a
statistic	of	how	good	the	fit	is,	 .

Simple	regression

If	X	has	only	one	dimension,	the	problem	is	the	familiar	equation	of	a	line	 ,	and	the	problem

can	be	classified	as	simple	regression.	By	calculating	 ,	the	variance	of	 	and	 ,	and	the	covariance
between	 	and	 ,	we	can	estimate	the	slope:

Then,	using	the	slope	and	the	means	of	x	and	y,	we	can	estimate	the	intercept:

The	code	in	Java	uses	the	SimpleRegression	class:

SimpleRegression	rg	=	new	SimpleRegression();

/*	x-y	pairs	of	Anscombe's	x1	and	y1	*/

double[][]	xyData	=	{{10.0,	8.04},	{8.0,	6.95},	{13.0,	7.58},

								{9.0,	8.81},	{11.0,	8.33},	{14.0,	9.96},	{6.0,	7.24},

								{4.0,	4.26},	{12.0,	10.84},	{7.0,	4.82},	{5.0,	5.68}};

rg.addData(xyData);

/*	get	regression	results	*/

double	alpha	=	rg.getIntercept();	//	3.0

double	alpha_err	=	rg.getInterceptStdErr();	//	1.12

double	beta	=	rg.getSlope();	//	0.5

double	beta_err	=	rg.getSlopeStdErr();	//	0.12	

double	r2	=	rg.getRSquare();	//	0.67

We	can	then	interpret	these	results	as	 ,	or	more	specifically	as	

.	How	much	can	we	trust	this	model?	With	 ,
it’s	a	fairly	decent	fit,	but	the	closer	it	is	to	the	ideal	of	 ,	the	better.	Note	that	if	we	perform	the
same	regression	on	the	other	three	datasets	from	Anscombe’s	quartet,	we	get	identical	parameters,	errors,
and	 .	This	is	a	profound,	albeit	perplexing,	result.	Clearly,	the	four	datasets	look	different,	but	their
linear	fits	(the	superposed	blue	lines)	are	identical.	Although	linear	regression	is	a	powerful	yet	simple
method	for	understanding	our	data	as	in	case	1,	in	case	2	linear	regression	in	x	is	probably	the	wrong	tool



to	use	here.	In	case	3,	linear	regression	is	probably	the	right	tool,	but	we	could	sensor	(remove)	the	data
point	that	appears	to	be	an	outlier.	In	case	4,	a	regression	model	is	most	likely	not	appropriate	at	all.	This
does	demonstrate	how	easy	it	is	to	fool	ourselves	that	a	model	is	correct	if	we	look	at	only	a	few
parameters	after	blindly	throwing	data	into	an	analysis	method.

Multiple	regression
There	are	many	ways	to	solve	this	problem,	but	the	most	common	and	probably	most	useful	is	the
ordinary	least	squares	(OLS)	method.	The	solution	is	expressed	in	terms	of	linear	algebra:

The	OLSMultipleLinearRegression	class	in	Apache	Commons	Math	is	just	a	convenient	wrapper
around	a	QR	decomposition.	This	implementation	also	provides	additional	functions	beyond	the	QR
decomposition	that	you	will	find	useful.	In	particular,	the	variance-covariance	matrix	of	 	is	as	follows,
where	the	matrix	R	is	from	the	QR	decomposition:

In	this	case,	R	must	be	truncated	to	the	dimension	of	beta.	Given	the	fit	residuals	 ,	we	can

calculate	the	variance	of	the	errors	 	where	 	and	 	are	the	respective	number	of	rows

and	columns	of	 .	The	square	root	of	the	diagonal	values	of	 	times	the	constant	 	gives	us	the
estimate	of	errors	on	the	fit	parameters:

The	Apache	Commons	Math	implementation	of	ordinary	least	squares	regression	utilizes	the	QR
decomposition	covered	in	linear	algebra.	The	methods	in	the	example	code	are	convenient	wrappers
around	several	standard	matrix	operations.	Note	that	the	default	is	to	include	an	intercept	term,	and	the
corresponding	value	is	the	first	position	of	the	estimated	parameters:

double[][]	xNData	=	{{0,	0.5},	{1,	1.2},	{2,	2.5},	{3,	3.6}};

double[]	yNData	=	{-1,	0.2,	0.9,	2.1};

//	default	is	to	include	an	intercept

OLSMultipleLinearRegression	mr	=	new	OLSMultipleLinearRegression();

/*	NOTE	that	y	and	x	are	reversed	compared	to	other	classes	/	methods	*/

mr.newSampleData(yNData,	xNData);

double[]	beta	=	mr.estimateRegressionParameters();

//	[-0.7499,	1.588,	-0.5555]

double[]	errs	=	mr.estimateRegressionParametersStandardErrors();



//	[0.2635,	0.6626,	0.6211]

double	r2	=	mr.calculateRSquared();

//	0.9945

Linear	regression	is	a	vast	topic	with	many	adaptations	—	too	many	to	be	covered	here.	However,	it	is
worth	noting	that	these	methods	are	relevant	only	if	the	relations	between	X	and	y	are	actually	linear.
Nature	is	full	of	nonlinear	relationships,	and	in	Chapter	5	we	will	address	more	ways	of	exploring	these.



Working	with	Large	Datasets
When	our	data	is	so	large	that	it	is	inefficient	to	store	it	in	memory	(or	it	just	won’t	fit!),	we	need	an
alternative	method	of	calculating	statistical	measures.	Classes	such	as	DescriptiveStatistics	store	all
data	in	memory	for	the	duration	of	the	instantiated	class.	However,	another	way	to	attack	this	problem	is
to	store	only	the	unnormalized	statistical	moments	and	update	them	one	data	point	at	a	time,	discarding
that	data	point	after	it	has	been	assimilated	into	the	calculations.	Apache	Commons	Math	has	two	such
classes:	SummaryStatistics	and	MultivariateSummaryStatistics.

The	usefulness	of	this	method	is	enhanced	by	the	fact	that	we	can	also	sum	unnormalized	moments	in
parallel.	We	can	split	data	into	partitions	and	keep	track	of	moments	in	each	partition	as	we	add	one	value
at	a	time.	In	the	end,	we	can	merge	all	those	moments	and	then	find	the	summary	statistics.	The	Apache
Commons	Math	class	AggregateSummaryStatistics	takes	care	of	this.	It	is	easy	to	imagine	terabytes	of
data	distributed	over	a	large	cluster	in	which	each	node	is	updating	statistical	moments.	As	the	jobs
complete,	the	moments	can	be	merged	in	a	simple	calculation,	and	the	task	is	complete.

In	general,	a	dataset	X	can	be	partitioned	into	 	smaller	datasets:	X1,	X2,	 	Xk.	Ideally,	we	can	perform
all	sorts	of	computations	on	each	partition	Xi	and	then	later	merge	these	results	to	get	the	desired
quantities	for	X.	For	example,	if	we	wanted	to	count	the	number	of	data	points	in	X,	we	could	count	the
number	of	points	in	each	subset	and	then	later	add	those	results	together	to	get	the	total	count:

This	is	true	whether	the	partitions	were	calculated	on	the	same	machine	in	different	threads,	or	on
different	machines	entirely.

So	if	we	calculated	the	number	of	points,	and	additionally,	the	sum	of	values	for	each	subset	(and	kept
track	of	them),	we	could	later	use	that	information	to	calculate	the	mean	of	X	in	a	distributed	way.

At	the	simplest	level,	we	need	only	computations	for	pairwise	operations,	because	any	number	of
operations	can	reduce	that	way.	For	example,	X	=	(X1	+	X2)	+	(X3	+	X4)	is	a	combination	of	three
pairwise	operations.	There	are	then	three	general	situations	for	pairwise	algorithms:	first,	where	we	are
merging	two	partitions,	each	with	 ;	the	second,	where	one	partition	has	 	and	the	other
partition	is	a	singleton	with	 ;	and	the	third	where	both	partitions	are	singletons.



Accumulating	Statistics
We	saw	in	the	preceding	chapter	how	stats	can	be	updated.	Perhaps	it	occurred	to	you	that	we	could
calculate	and	store	the	(unnormalized)	moments	on	different	machines	at	different	times,	and	update	them
at	our	convenience.	As	long	as	you	keep	track	of	the	number	of	points	and	all	relevant	statistical	moments,
you	can	recall	those	at	any	time	and	update	them	with	a	new	set	of	data	points.	While	the
DescriptiveStatistics	class	stored	all	the	data	and	did	these	updates	in	one	long	chain	of
calculations,	the	SummaryStatistics	class	(and	MultivariateSummaryStatistics	class)	do	not	store
any	of	the	data	you	input	to	them.	Rather,	these	classes	store	only	the	relevant	 ,	 ,	and	 .	For
massive	datasets,	this	is	an	efficient	way	to	keep	track	of	stats	without	incurring	the	huge	costs	of	storage
or	processing	power	whenever	we	need	a	statistic	such	as	mean	or	standard	deviation.

SummaryStatistics	ss	=	new	SummaryStatistics();

/*	This	class	is	storeless,	so	it	is	optimized	to	take	one	value	at	a	time	*/

ss.addValue(1.0);

ss.addValue(11.0);

ss.addValue(5.0);

								

/*	prints	a	report	*/

System.out.println(ss);

As	with	the	DescriptiveStatistics	class,	the	SummaryStatistics	class	also	has	a	toString()
method	that	prints	a	nicely	formatted	report:

SummaryStatistics:

n:	3

min:	1.0

max:	11.0

sum:	17.0

mean:	5.666666666666667

geometric	mean:	3.8029524607613916

variance:	25.333333333333332

population	variance:	16.88888888888889

second	moment:	50.666666666666664

sum	of	squares:	147.0

standard	deviation:	5.033222956847166

sum	of	logs:	4.007333185232471

For	multivariate	statistics,	the	MultivariateSummaryStatistics	class	is	directly	analogous	to	its
univariate	counterpart.	To	instantiate	this	class,	you	must	specify	the	dimension	of	the	variates	(the
number	of	columns	in	the	dataset)	and	indicate	whether	the	input	data	is	a	sample.	Typically,	this	option
should	be	set	to	true,	but	note	that	if	you	forget	it,	the	default	is	false,	and	that	will	have	consequences.
The	MultivariateSummaryStatistics	class	contains	methods	that	keep	track	of	the	covariance
between	every	set	of	variates.	Setting	the	constructor	argument	isCovarianceBiasedCorrected	to	true
uses	the	biased	correction	factor	for	the	covariance:

MultivariateSummaryStatistics	mss	=	new	MultivariateSummaryStatistics(3,	true);

/*	data	could	be	2d	array,	matrix,	or	class	with	a	double	array	data	field	*/

double[]	x1	=	{1.0,	2.0,	1.2};

double[]	x2	=	{11.0,	21.0,	10.2};

double[]	x3	=	{5.0,	7.0,	0.2};

/*	This	class	is	storeless,	so	it	is	optimized	to	take	one	value	at	a	time	*/

mss.addValue(x1);

mss.addValue(x2);



mss.addValue(x3);

								

/*	prints	a	report	*/

System.out.println(mss);

As	in	SummaryStatistics,	we	can	print	a	formatted	report	with	the	added	bonus	of	the	covariance
matrix:

MultivariateSummaryStatistics:

n:	3

min:	1.0,	2.0,	0.2

max:	11.0,	21.0,	10.2

mean:	5.666666666666667,	10.0,	3.866666666666667

geometric	mean:	3.8029524607613916,	6.649399761150975,	1.3477328201610665

sum	of	squares:	147.0,	494.0,	105.52

sum	of	logarithms:	4.007333185232471,	5.683579767338681,	0.8952713646500794

standard	deviation:	5.033222956847166,	9.848857801796104,	5.507570547286103

covariance:	Array2DRowRealMatrix{{25.3333333333,49.0,24.3333333333},

{49.0,97.0,51.0},{24.3333333333,51.0,30.3333333333}}

Of	course,	each	of	these	quantities	is	accessible	via	their	getters:

int	d	=	mss.getDimension();

long	n	=	mss.getDimension();

double[]	min	=	mss.getMin();

double[]	max	=	mss.getMax();

double[]	mean	=	mss.getMean();

double[]	std	=	mss.getStandardDeviation();

RealMatrix	cov	=	mss.getCovariance();

NOTE
At	this	time,	third-	and	fourth-order	moments	are	not	calculated	in	SummaryStatistics	and	MultivariateSummaryStatistics
classes,	so	skewness	and	kurtosis	are	not	available.	They	are	in	the	works!



Merging	Statistics
The	unnormalized	statistical	moments	and	co-moments	can	also	be	merged.	This	is	useful	when	data
partitions	are	processed	in	parallel	and	the	results	are	merged	later	when	all	subprocesses	have
completed.

For	this	task,	we	use	the	class	AggregateSummaryStatistics.	In	general,	statistical	moments	propagate
as	the	order	is	increased.	In	other	words,	in	order	to	calculate	the	third	moment	 	you	will	need	the
moments	 and	 .	It	is	therefore	essential	to	calculate	and	update	the	highest	order	moment	first	and
then	work	downward.

For	example,	after	calculating	the	quantity	 	as	described	earlier,	update	 	with

Then	update	 	with

Next,	update	 	with:

And	finally,	update	the	mean	with:

Note	that	these	update	formulas	are	for	merging	data	partitions	where	both	have	 .	If	either	of	the
partitions	is	a	singleton	( ),	then	use	the	incremental	update	formulas	from	the	prior	section.

Here	is	an	example	demonstrating	the	aggregation	of	independent	statistical	summaries.	Note	that	here,
any	instance	of	SummaryStatistics	could	be	serialized	and	stored	away	for	future	use.

//	The	following	three	summaries	could	occur	on

//	three	different	machines	at	different	times

SummaryStatistics	ss1	=	new	SummaryStatistics();

ss1.addValue(1.0);

ss1.addValue(11.0);

ss1.addValue(5.0);

								



SummaryStatistics	ss2	=	new	SummaryStatistics();

ss2.addValue(2.0);

ss2.addValue(12.0);

ss2.addValue(6.0);

								

SummaryStatistics	ss3	=	new	SummaryStatistics();

ss3.addValue(0.0);

ss3.addValue(10.0);

ss3.addValue(4.0);

//	The	following	can	occur	on	any	machine	at

//	any	time	later	than	above

List<SummaryStatistics>	ls	=	new	ArrayList<>();

ls.add(ss1);

ls.add(ss2);

ls.add(ss3);

								

StatisticalSummaryValues	s	=	AggregateSummaryStatistics.aggregate(ls);

								

System.out.println(s);

This	prints	the	following	report	as	if	the	computation	had	occurred	on	a	single	dataset:

StatisticalSummaryValues:

n:	9

min:	0.0

max:	12.0

mean:	5.666666666666667

std	dev:	4.444097208657794

variance:	19.75

sum:	51.0



Regression
The	SimpleRegression	class	makes	this	easy,	because	moments	and	co-moments	add	together	easily.
The	Aggregates	statistics	produce	the	same	result	as	in	the	original	statistical	summary:.

SimpleRegression	rg	=	new	SimpleRegression();

/*	x-y	pairs	of	Anscombe's	x1	and	y1	*/

double[][]	xyData	=	{{10.0,	8.04},	{8.0,	6.95},	{13.0,	7.58},

								{9.0,	8.81},	{11.0,	8.33},	{14.0,	9.96},	{6.0,	7.24},

								{4.0,	4.26},	{12.0,	10.84},	{7.0,	4.82},	{5.0,	5.68}};

rg.addData(xyData);

/**/

double[][]	xyData2	=	{{10.0,	8.04},	{8.0,	6.95},	{13.0,	7.58},

								{9.0,	8.81},	{11.0,	8.33},	{14.0,	9.96},	{6.0,	7.24},

								{4.0,	4.26},	{12.0,	10.84},	{7.0,	4.82},	{5.0,	5.68}};

SimpleRegression	rg2	=	new	SimpleRegression();

rg2.addData(xyData);

/*	merge	the	regression	from	rg	with	rg2	*/

rg.append(rg2);

/*	get	regression	results	for	the	combined	regressions	*/

double	alpha	=	rg.getIntercept();	//	3.0

double	alpha_err	=	rg.getInterceptStdErr();	//	1.12

double	beta	=	rg.getSlope();	//	0.5

double	beta_err	=	rg.getSlopeStdErr();	//	0.12	

double	r2	=	rg.getRSquare();	//	0.67

In	the	case	of	multivariate	regression,	MillerUpdatingRegression	enables	a	storeless	regression	via
MillerUpdatingRegression.addObservation(double[]	x,	double	y)	or
MillerUpdatingRegression.addObservations(double[][]	x,	double[]	y).

int	numVars	=	3;

boolean	includeIntercept	=	true;

MillerUpdatingRegression	r	=

				new	MillerUpdatingRegression(numVars,	includeIntercept);

double[][]	x	=	{{0,	0.5},	{1,	1.2},	{2,	2.5},	{3,	3.6}};

double[]	y	=	{-1,	0.2,	0.9,	2.1};

r.addObservations(x,	y);

RegressionResults	rr	=	r.regress();

double[]	params	=	rr.getParameterEstimates();

double[]	errs	=	rr.getStdErrorOfEstimates();

double	r2	=	rr.getRSquared();



Using	Built-in	Database	Functions
Most	databases	have	built-in	statistical	aggregation	functions.	If	your	data	is	already	in	MySQL	you	may
not	have	to	import	the	data	to	a	Java	application.	You	can	use	built-in	functions.	The	use	of	GROUP	BY	and
ORDER	BY	combined	with	a	WHERE	clause	make	this	a	powerful	way	to	reduce	your	data	to	statistical
summaries.	Keep	in	mind	that	the	computation	must	be	done	somewhere,	either	in	your	application	or	by
the	database	server.	The	trade-off	is,	is	the	data	small	enough	that	I/O	and	CPU	is	not	an	issue?	If	you
don’t	want	the	DB	performance	to	take	a	hit	CPU-wise,	exploiting	all	that	I/O	bandwidth	might	be	OK.
Other	times,	you	would	rather	have	the	CPU	in	the	DB	app	compute	all	the	stats	and	use	just	a	tiny	bit	of
I/O	to	shuttle	back	the	results	to	the	waiting	app.

WARNING
In	MySQL,	the	built-in	function	STDDEV	returns	the	population’s	standard	deviation.	Use	the	more	specific	functions	STDDEV_SAMP
and	STDDEV_POP	for	respective	sample	and	population	standard	deviations.

For	example,	we	can	query	a	table	with	various	built-in	functions,	which	in	this	case	are	example	revenue
statistics	such	as	AVG	and	STDDEV	from	a	sales	table:

SELECT	city,	SUM(revenue)	AS	total_rev,	AVG(revenue)	AS	avg_rev,	

				STDDEV(revenue)	AS	std_rev

				FROM	sales_table	WHERE	<some	criteria>	GROUP	BY	city	ORDER	BY	total_rev	DESC;

Note	that	we	can	use	the	results	as	is	from	a	JDBC	query	or	dump	them	directly	into	the	constructor	of
StatisticalSummaryValues(double	mean,	double	variance,	long	count,	double	min,

double	max)	for	further	use	down	the	line.	Say	we	have	a	query	like	this:

SELECT	city,	AVG(revenue)	AS	avg_rev,

													VAR_SAMP(revenue)	AS	var_rev,

													COUNT(revenue)	AS	count_rev,

MIN(revenue)	AS	min_rev,	MAX(revenue)	AS	max_rev

				FROM	sales_table	WHERE	<some	criteria>	GROUP	BY	city;

We	can	populate	each	StatistialSummaryValues	instance	(arbitrarily)	in	a	List	or	Map	with	keys
equal	to	city	as	we	iterate	through	the	database	cursor:

Map<String,	StatisticalSummaryValues>	revenueStats	=	new	HashMap<>();

Statement	st	=	c.createStatement();

ResultSet	rs	=	st.executeQuery(selectSQL);

while(rs.next())	{

				StatisticalSummaryValues	ss	=	new	StatisticalSummaryValues(

								rs.getDouble("avg_rev"),

								rs.getDouble("var_rev"),

								rs.getLong("count_rev"),

								rs.getDouble("min_rev"),

								rs.getDouble("max_rev")	);

					revenueStats.put(rs.getString("city"),	ss);

}

rs.close();

st.close();



Some	simple	database	wizardry	can	save	lots	of	I/O	for	larger	datasets.



	



Chapter	4.	Data	Operations

Now	that	we	know	how	to	input	data	into	a	useful	data	structure,	we	can	operate	on	that	data	by	using
what	we	know	about	statistics	and	linear	algebra.	There	are	many

operations	we	perform	on	data	before	we	subject	it	to	a	learning	algorithm.

Often	called	preprocessing,	this	step	comprises	data

cleaning,	regularizing	or	scaling	the	data,	reducing	the	data	to	a	smaller

size,	encoding	text	values	to	numerical	values,	and	splitting	the	data	into

parts	for	model	training	and	testing.	Often	our	data	is	already	in	one	form

or	another	(e.g.,	List	or	double[][]),	and	the

learning	routines	we	will	use	may	take	either	or	both	of	those	formats.

Additionally,	a	learning	algorithm	may	need	to	know	whether	the	labels	are

binary	or	multiclass	or	even	encoded	in	some	other	way	such	as	text.	We	need

to	account	for	this	and	prepare	the	data	before	it	goes	in	the	learning

algorithm.	The	steps	in	this	chapter	can	be	part	of	an	automated	pipeline

that	takes	raw	data	from	the	source	and	prepares	it	for	either	learning	or

prediction	algorithms.



Transforming	Text	Data
Many	learning	and	prediction	algorithms	require	numerical	input.	One	of	the	simplest	ways	to	achieve	this
is	by	creating	a	vector	space	model	in	which

we	define	a	vector	of	known	length	and	then	assign	a	collection	of	text

snippets	(or	even	words)	to	a	corresponding	collection	of	vectors.	The

general	process	of	converting	text	to	vectors	has	many	options	and

variations.	Here	we	will	assume	that	there	exists	a	large	body	of	text

(corpus)	that	can	be	divided	into	sentences	or	lines	(documents)	that	can

in	turn	be	divided	into	words	(tokens).	Note	that	the	definitions	of

corpus,	document,	and

token	are	user-definable.



Extracting	Tokens	from	a	Document
For	each	document,	we	want	to	extract	all	the	tokens.	Because	there	are	many	ways	to	approach	this
problem,	we	can	create	an	interface	with

a	method	that	takes	in	a	document	string	and	returns	an	array	of

String	tokens:

public	interface	Tokenizer	{

				String[]	getTokens(String	document);

}

The	tokens	may	have	lots	of	characters	that	are	undesirable,	such

as	punctuation,	numbers,	or	other	characters.	Of	course,	this	will

entirely	depend	on	your	application.	In	this	example,	we	are	concerned

only	with	the	actual	content	of	regular	English	words,	so	we	can	clean

the	tokens	to	accept	only	lowercase	alphabetical	characters.	Including	a

variable	for	minimum	token	size	enables	us	to	skip	words	such	as

a,	or,	and

at.

public	class	SimpleTokenizer	implements	Tokenizer	{

				

				private	final	int	minTokenSize;

				public	SimpleTokenizer(int	minTokenSize)	{

								this.minTokenSize	=	minTokenSize;

				}

				public	SimpleTokenizer()	{

								this(0);

				}

				

				@Override

				public	String[]	getTokens(String	document)	{

								String[]	tokens	=	document.trim().split("\\s+");

								List<String>	cleanTokens	=	new	ArrayList<>();

								for	(String	token	:	tokens)	{

												String	cleanToken	=	token.trim().toLowerCase()

														.replaceAll("[^A-Za-z\']+",	"");

												if(cleanToken.length()	>	minTokenSize)	{

																cleanTokens.add(cleanToken);

												}

								}

								return	cleanTokens.toArray(new	String[0]);

				}

}



Utilizing	Dictionaries
A	dictionary	is	a	list	of	terms	that	are	relevant	(i.e.,	a	“vocabulary”).

There	is	more	than	one	strategy	to	implement	a	dictionary.	The	important

feature	is	that	each	term	needs	to	be	associated	with	an	integer	value

that	corresponds	to	its	location	in	a	vector.	Of	course,	this	can	be	an

array	that	is	searched	by	position,	but	for	large	dictionaries,	this	is

inefficient	and	a	Map	is	better.	For	much	larger

dictionaries,	we	can	skip	the	term	storage	and	use	the	hashing	trick.	In

general,	we	need	to	know	the	number	of	terms	in	the	dictionary	for

creating	vectors	as	well	as	a	method	that	returns	the	index	of

particular	term.	Note	that	int	cannot	be	null,	so	by	using	the	boxed	type	Integer,	a	returned	index	can
either	be	an	int	or	null	value.

public	interface	Dictionary	{

				Integer	getTermIndex(String	term);

				int	getNumTerms();

}

We	can	build	a	dictionary	of	the	exact	terms	collected	from	the

Tokenizer	instance.	Note	that	the	strategy	is	to	add	a	term

and	integer	for	each	item.	New	items	will	increment	the	counter,	and

duplicates	will	be	discarded	without	incrementing	the	counter.	In	this

case,	the	TermDictionary	class	needs	methods	for	adding	new

terms:

public	class	TermDictionary	implements	Dictionary	{

				

				private	final	Map<String,	Integer>	indexedTerms;

				private	int	counter;

				public	TermDictionary()	{

								indexedTerms	=	new	HashMap<>();

								counter	=	0;

				}

				

				public	void	addTerm(String	term)	{

								if(!indexedTerms.containsKey(term))	{

												indexedTerms.put(term,	counter++);

								}							

				}

				public	void	addTerms(String[]	terms)	{

								for	(String	term	:	terms)	{



												addTerm(term);

								}

				}

				

				@Override

				public	Integer	getTermIndex(String	term)	{

								return	indexedTerms.get(term);

				}

				@Override

				public	int	getNumTerms()	{

								return	indexedTerms.size();

				}

}

For	a	large	number	of	terms,	we	can	use	the	hashing	trick.

Essentially,	we	use	the	hash	code	of	the	String	value	for

each	term	and	then	take	the	modulo	of	the	number	of	terms	that	will	be

in	the	dictionary.	For	a	large	number	of	terms	(about	1	million),

collisions	are	unlikely.	Note	that	unlike	with

TermDictionary,	we	do	not	need	to	add	terms	or	keep	track

of	terms.	Each	term	index	is	calculated	on	the	fly.	The	number	of	terms

is	a	constant	that	we	set.	For	efficiency	in	hash	table	retrieval,	it’s

a	good	idea	to	make	the	number	of	terms	equal	to

2n.	For	around

220,	it	will	be	approximately	1	million

terms.

public	class	HashingDictionary	implements	Dictionary	{

				private	int	numTerms;	//	2^n	is	optimal

				public	HashingDictionary()	{

								//	2^20	=	1048576

								this(new	Double(Math.pow(2,20)).intValue());

				}

				public	HashingDictionary(int	numTerms)	{

								this.numTerms	=	numTerms;

				}

				

				@Override

				public	Integer	getTermIndex(String	term)	{

								return	Math.floorMod(term.hashCode(),	numTerms);

				}

				@Override

				public	int	getNumTerms()	{

								return	numTerms;

				}

}



Vectorizing	a	Document
Now	that	we	have	a	tokenizer	and	a	dictionary,	we	can	turn	a	list	of	words	into	numeric	values	that	can	be
passed	into	machine-learning

algorithms.	The	most	straightforward	way	is	to	first	decide	on	what	the

dictionary	is,	and	then	count	the	number	of	occurrences	that	are	in	the

sentence	(or	text	of	interest).	This	is	often	called	bag	of	words.	In	some	cases,	we	want	to	know	only
whether	a	word	occurred.	In	such	a	case,	a	1	is

placed	in	the	vector	as	opposed	to	a	count:

public	class	Vectorizer	{

				private	final	Dictionary	dictionary;

				private	final	Tokenizer	tokenzier;

				private	final	boolean	isBinary;

				public	Vectorizer(Dictionary	dictionary,	Tokenizer	tokenzier,

								boolean	isBinary)	{

								this.dictionary	=	dictionary;

								this.tokenzier	=	tokenzier;

								this.isBinary	=	isBinary;

				}

				

				public	Vectorizer()	{

								this(new	HashingDictionary(),	new	SimpleTokenizer(),	false);

				}

				public	RealVector	getCountVector(String	document)	{

								RealVector	vector	=	new	OpenMapRealVector(dictionary.getNumTerms());

								String[]	tokens	=	tokenzier.getTokens(document);

								for	(String	token	:	tokens)	{

												Integer	index	=	dictionary.getTermIndex(token);

												if(index	!=	null)	{

																if(isBinary)	{

																				vector.setEntry(index,	1);

																}	else	{

																				vector.addToEntry(index,	1);	//	increment	!

																}

												}

								}

								return	vector;

				}

				public	RealMatrix	getCountMatrix(List<String>	documents)	{

								int	rowDimension	=	documents.size();

								int	columnDimension	=	dictionary.getNumTerms();

								RealMatrix	matrix	=	new	OpenMapRealMatrix(rowDimension,	columnDimension);

								int	counter	=	0;

								for	(String	document	:	documents)	{

												matrix.setRowVector(counter++,	getCountVector(document));

								}

								return	matrix;

				}

}

In	some	cases,	we	will	want	to	reduce	the	effects	of	common	words.

The	term	frequency	—	inverse	document	frequency	(TFIDF)	vector	does	just	that.	The	TFIDF	component



is	highest	when	a	term	occurs	many

times	within	a	small	number	of	documents	but	lowest	when	the	term	occurs

in	nearly	all	documents.	Note	that	TFIDF	is	just	term	frequency	times

the	inverse	document	frequency:	 .	Here	TF	is	the	number	of	times	a	term	has
appeared

in	a	document	(its	count	vector).	IDF	is	the	(pseudo)inverse	of	the

document	frequency,	DF,	the	number	of	documents	the	term	has	appeared

in.	In	general,	we	can	compute	TF	by	counting	terms	per	document,	and	DF

by	computing	a	binary	vector	over	each	document	and	cumulatively	summing

those	vectors	as	we	process	each	document.	The	most	common	form	of	the

TFIDF	is	shown	here,	where	N	is	the	total	number	of

documents	processed:

This	is	just	one	strategy	for	TFIDF.	Note	that	the	log	function

will	cause	trouble	if	either	N	or

DF	has	zero	values.	Some	strategies	avoid	this	by

adding	in	small	factors	or	1.	We	can	handle	it	in	our	implementation	by

setting	log(0)	to	0.	In	general,	our	implementation	here	is

to	first	create	a	matrix	of	counts	and	then	operate	over	that	matrix,

converting	each	term	into	its	weighted	TFIDF	value.	Because	these

matrices	are	usually	sparse,	it’s	a	good	idea	to	use	the	optimized

order-walking	operator:

public	class	TFIDF	implements	RealMatrixChangingVisitor	{

				private	final	int	numDocuments;

				private	final	RealVector	termDocumentFrequency;

				double	logNumDocuments;

				public	TFIDF(int	numDocuments,	RealVector	termDocumentFrequency)	{

								this.numDocuments	=	numDocuments;

								this.termDocumentFrequency	=	termDocumentFrequency;

								this.logNumDocuments	=	numDocuments	>	0	?	Math.log(numDocuments)	:	0;

				}

				

				@Override

				public	void	start(int	rows,	int	columns,	int	startRow,	int	endRow,

												int	startColumn,	int	endColumn)	{

								//NA



				}

				@Override

				public	double	visit(int	row,	int	column,	double	value)	{

								double	df	=	termDocumentFrequency.getEntry(column);

								double	logDF	=	df	>	0	?	Math.log(df)	:	0.0;

								//	TFIDF	=	TF_i	*	log(N/DF_i)	=	TF_i	*	(	log(N)	-	log(DF_i)	)

								return	value	*	(logNumDocuments	-	logDF);

				}

				@Override

				public	double	end()	{

								return	0.0;

				}

				

}

Then	TFIDFVectorizer	uses	both	counts	and	binary	counts:

public	class	TFIDFVectorizer	{

				private	Vectorizer	vectorizer;

				private	Vectorizer	binaryVectorizer;

				private	int	numTerms;

				

				public	TFIDFVectorizer(Dictionary	dictionary,	Tokenizer	tokenzier)	{

								vectorizer	=	new	Vectorizer(dictionary,	tokenzier,	false);

								binaryVectorizer	=	new	Vectorizer(dictionary,	tokenzier,	true);

								numTerms	=	dictionary.getNumTerms();

				}

				public	TFIDFVectorizer()	{

							this(new	HashingDictionary(),	new	SimpleTokenizer());

				}

				

				public	RealVector	getTermDocumentCount(List<String>	documents)	{

								RealVector	vector	=	new	OpenMapRealVector(numTerms);

								for	(String	document	:	documents)	{

												vector.add(binaryVectorizer.getCountVector(document));

								}

								return	vector;

				}

				

				public	RealMatrix	getTFIDF(List<String>	documents)	{

								int	numDocuments	=	documents.size();

								RealVector	df	=	getTermDocumentCount(documents);

								RealMatrix	tfidf	=	vectorizer.getCountMatrix(documents);

								tfidf.walkInOptimizedOrder(new	TFIDF(numDocuments,	df));

								return	tfidf;

				}

}

Here’s	an	example	using	the	sentiment	dataset	described	in	Appendix	A:	/*	sentiment	data	...	see
appendix	*/	Sentiment	sentiment	=	new	Sentiment();

/*	create	a	dictionary	of	all	terms	*/	TermDictionary	termDictionary	=	new
TermDictionary();



/*	need	a	basic	tokenizer	to	parse	text	*/	SimpleTokenizer	tokenizer	=	new
SimpleTokenizer();

/*	add	all	terms	in	sentiment	dataset	to	dictionary	*/	for	(String	document	:
sentiment.getDocuments())	{	String[]tokens	=	tokenizer.getTokens(document);
termDictionary.addTerms(tokens);	}

/*	create	of	matrix	of	word	counts	for	each	sentence	*/	Vectorizer	vectorizer	=	new
Vectorizer(termDictionary,	tokenizer,	false);	RealMatrix	counts	=
vectorizer.getCountMatrix(sentiment.getDocuments());

/*	...	or	create	a	binary	counter	*/	Vectorizer	binaryVectorizer	=	new
Vectorizer(termDictionary,	tokenizer,	true);	RealMatrix	binCounts	=
binaryVectorizer.getCountMatrix(sentiment.getDocuments());

/*	...	or	create	a	matrix	TFIDF	*/	TFIDFVectorizer	tfidfVectorizer	=	new
TFIDFVectorizer(termDictionary,	tokenizer);	RealMatrix	tfidf	=
tfidfVectorizer.getTFIDF(sentiment.getDocuments());



Scaling	and	Regularizing	Numeric	Data
Should	we	pull	data	from	our	classes	or	use	the	arrays	as	is?	Our	goal	is	to	apply	some	transform	of	each
element	in	the	dataset	such	that

	.	There	are	two	basic	ways	to	scale	data:	either	by

column	or	row.	For	column	scaling,	we	just	need	to	collect	the	statistics

for	each	column	of	data.	In	particular,	we	need	the	min,	max,	mean,	and

standard	deviation.	So	if	we	add	the	entire	dataset	to	a	MultivariateSummaryStatistics	instance,	we
will	have	all	of	that.	In	the	other	case	of	row	scaling,	we	need	to

collect	the	L1	or	L2	normalization	of	each	row.	We	can	store	those	in	a

RealVector	instance,	which	can	be	sparse.

WARNING
If	you	scale	the	data	to	train	the	model,	retain	any	mins,	maxes,

means,	or	standard	deviations	you	have	used!	You	must	use	the	same

technique,	including	the	stored	parameters,	when	transforming	a

new	dataset	that	you	will	use	for	prediction.	Note

that	if	you	are	splitting	data	into	Train/Validate/Test	sets,	then	scale	the	training	data	and	use	those	values	(e.g.,	means)	to	scale
the	validation	and	test	sets	so

they	will	be	unbiased.



Scaling	Columns
The	general	form	for	scaling	columns	is	to	use	a	RealMatrixChangingVisitor	with	precomputed
column	statistics	passed	into	the	constructor.	As	the

operation	visits	each	matrix	entry,	the	appropriate	column	statistics

can	be	utilized.

public	class	MatrixScalingOperator	implements	RealMatrixChangingVisitor	{

				MultivariateSummaryStatistics	mss;

				

				public	MatrixScalingOperator(MultivariateSummaryStatistics	mss)	{

								this.mss	=	mss;

				}

				@Override

				public	void	start(int	rows,	int	columns,	int	startRow,	int	endRow,

						int	startColumn,	int	endColumn)	{

								//	nothing

				}

				@Override

				public	double	visit(int	row,	int	column,	double	value)	{

								//	implement	specific	type	here

				}

				@Override

				public	double	end()	{

								return	0.0;

				}

}

Min-max	scaling
Min-max	scaling	ensures	that	the	smallest	value	is	0	and	the	largest	value	is	1

for	each	column	independently.	We	can	transform	each	element

i	with	min	and	max	for	that	column

j:

This	can	be	implemented	as	follows:

public	class	MatrixScalingMinMaxOperator	implements	RealMatrixChangingVisitor	{

...

				@Override



				public	double	visit(int	row,	int	column,	double	value)	{

								double	min	=	mss.getMin()[column];

								double	max	=	mss.getMax()[column];

								return	(value	-	min)	/	(max	-	min);

				}

...

}

At	times	we	want	to	specify	the	lower	a	and

upper	b	limits	(instead	of	0	and	1).	In	this

case,	we	calculate	the	0:1	scaled	data	first	and	then	apply	a	second

round	of	scaling:

Centering	the	data
Centering	the	data	around	the	mean	value	ensures	that	the	average	of	the	data	column	will	be	zero.
However,	there	can	still	be	extreme	mins	and

maxes	because	they	are	unbounded.	Every	value	in	one	column	is

translated	by	that	column’s	mean:

This	can	be	implemented	as	follows:

@Override

public	double	visit(int	row,	int	column,	double	value)	{

				double	mean	=	mss.getMean()[column];

				return	value	-	mean;

}

Unit	normal	scaling
Unit	normal	scaling	is	also	known	as	a	z-score.	It	rescales	every	data	point	in	a	column	such	that	it	is	a
member	of	unit

normal	distribution	by	centering	it	about	the	mean	and	dividing	by	the

standard	deviation.	Each	column	will	then	have	an	average	value	of

zero,	and	its	distribution	of	values	will	mostly	be	smaller	than	1,

although	as	a	distribution,	this	is	not	guaranteed	because	the	values

are	unbounded.



This	can	be	implemented	as	follows:

@Override

public	double	visit(int	row,	int	column,	double	value)	{

				double	mean	=	mss.getMean()[column];

				double	std	=	mss.getStandardDeviation()[column];

				return	(value	-	mean)	/	std;

}



Scaling	Rows
When	each	row	of	data	is	a	record	across	all	variables,	scaling	by	row	is	typically	to	perform	an	L1	or
L2	regularization:

public	class	MatrixScalingOperator	implements	RealMatrixChangingVisitor	{

				RealVector	normals;

				public	MatrixScalingOperator(RealVector	normals)	{

								this.normals	=	normals;

				}

				@Override

				public	void	start(int	rows,	int	columns,	int	startRow,	int	endRow,

							int	startColumn,	int	endColumn)	{

								//	nothing

				}

				@Override

				public	double	visit(int	row,	int	column,	double	value)	{

								//implement

				}

				@Override

				public	double	end()	{

								return	0.0;

				}

}

L1	regularization
In	this	case,	we	are	normalizing	each	row	of	data	such	that	the	sum	of	(absolute)	values	is	equal	to	1,
because	we	divide	each	element

j	of	row	i	by	the	row	L1

normal:

We	implement	this	as	follows:

@Override

public	double	visit(int	row,	int	column,	double	value)	{

				double	rowNormal	=	normals.getEntry(row);

				return	(	rowNormal	>	0	)	?	value	/	rowNormal	:	0;

}

L2	regularization
L2	regularization	scales	by	row,	not	column.	In	this	case,	we	are	normalizing	each	row	of	data	as	we
divide	each	element



j	of	row	i	by	the	row	L2

normal.	The	length	of	each	row	will	now	be	equal	to	1:

We	implement	this	with	the	following:

@Override

public	double	visit(int	row,	int	column,	double	value)	{

				double	rowNormal	=	normals.getEntry(row);

				return	(	rowNormal	>	0	)	?	value	/	rowNormal	:	0;

}



Matrix	Scaling	Operator
We	can	collect	the	scaling	algorithms	in	static	methods	because	we	are

altering	the	matrix	in	place:

public	class	MatrixScaler	{

				public	static	void	minmax(RealMatrix	matrix)	{

								MultivariateSummaryStatistics	mss	=	getStats(matrix);

								matrix.walkInOptimizedOrder(new	MatrixScalingMinMaxOperator(mss));

				}

				

				public	static	void	center(RealMatrix	matrix)	{

								MultivariateSummaryStatistics	mss	=	getStats(matrix);

								matrix.walkInOptimizedOrder(

										new	MatrixScalingOperator(mss,	MatrixScaleType.CENTER));

				}

				

				public	static	void	zscore(RealMatrix	matrix)	{

								MultivariateSummaryStatistics	mss	=	getStats(matrix);

								matrix.walkInOptimizedOrder(

										new	MatrixScalingOperator(mss,	MatrixScaleType.ZSCORE));

				}

				

				public	static	void	l1(RealMatrix	matrix)	{

								RealVector	normals	=	getL1Normals(matrix);

								matrix.walkInOptimizedOrder(

										new	MatrixScalingOperator(normals,	MatrixScaleType.L1));

				}

				

				public	static	void	l2(RealMatrix	matrix)	{

								RealVector	normals	=	getL2Normals(matrix);

								matrix.walkInOptimizedOrder(

										new	MatrixScalingOperator(normals,	MatrixScaleType.L2));

				}

				

				private	static	RealVector	getL1Normals(RealMatrix	matrix)	{

								RealVector	normals	=	new	OpenMapRealVector(matrix.getRowDimension());

								for	(int	i	=	0;	i	<	matrix.getRowDimension();	i++)	{

												double	l1Norm	=	matrix.getRowVector(i).getL1Norm();

												if	(l1Norm	>	0)	{

																normals.setEntry(i,	l1Norm);

												}

								}

								return	normals;

				}

				

				private	static	RealVector	getL2Normals(RealMatrix	matrix)	{

								RealVector	normals	=	new	OpenMapRealVector(matrix.getRowDimension());

								for	(int	i	=	0;	i	<	matrix.getRowDimension();	i++)	{

												double	l2Norm	=	matrix.getRowVector(i).getNorm();

												if	(l2Norm	>	0)	{

																normals.setEntry(i,	l2Norm);

												}

								}

								return	normals;

				}

				



				private	static	MultivariateSummaryStatistics	getStats(RealMatrix	matrix)	{

								MultivariateSummaryStatistics	mss	=	

								new	MultivariateSummaryStatistics(matrix.getColumnDimension(),	true);

								for	(int	i	=	0;	i	<	matrix.getRowDimension();	i++)	{

												mss.addValue(matrix.getRow(i));

								}

								return	mss;

				}

}

Now	it	is	really	easy	to	use	it:	RealMatrix	matrix	=	new	OpenMapRealMatrix(10,	3);
matrix.addToEntry(0,	0,	1.0);	matrix.addToEntry(0,	2,	2.0);	matrix.addToEntry(1,	0,
1.0);	matrix.addToEntry(2,	0,	3.0);	matrix.addToEntry(3,	1,	5.0);	matrix.addToEntry(6,
2,	1.0);	matrix.addToEntry(8,	0,	8.0);	matrix.addToEntry(9,	1,	3.0);

/*	scale	matrix	in-place	*/	MatrixScaler.minmax(matrix);



Reducing	Data	to	Principal	Components
The	goal	of	a	principal	components	analysis	(PCA)	is	to	transform	a	dataset	into	another	dataset	with
fewer	dimensions.	We	can	envision	this	as	applying	a	function

f	to	an	m	×

n	matrix	 	such	that	the	result	will	be	an	m	×	k	matrix	 ,	where	k	<

n:

This	is	achieved	by	finding	the	eigenvectors	and	eigenvalues	via	linear	algebra	algorithms.

One	benefit	of	this	type	of	transformation	is	that	the	new	dimensions	are

ordered	from	most	significant	to	least.	For	multidimensional	data,	we	can

sometimes	gain	insight	into	any	significant	relationships	by	plotting	the

first	two	dimensions	of	the	principal	components.	In	Figure	4-1,	we	have	plotted	the	first	two	principal
components	of	the	Iris	dataset	(see	Appendix	A).	The	Iris	dataset	is	a	four-dimensional	set	of	features
with	three	possible	labels.

In	this	image,	we	note	that	by	plotting	the	original	data	projected	onto

the	first	two	principal	components,	we	can	see	a	separation	of	the	three

classes.	This	distinction	does	not	occur	when	plotting	any	of	the	two

dimensions	from	the	original	dataset.

However,	for	high-dimensional	data,	we	need	a	more	robust	way	of

determining	the	number	of	principal	components	to	keep.	Because	the

principal	components	are	ordered	from	most	significant	to	least,	we	can

formulate	the	explained	variance	of	the	principal	components	by	computing

the	normalized,	cumulative	sum	of	the	eigenvalues	 :



Figure	4-1.	IRIS	data’s	first	two	principal	components

Here,	each	additional	component	explains	an	additional	percentage	of

the	data.	There	are	then	two	uses	for	the	explained	variance.	When	we

explicitly	choose	a	number	of	principal	components,	we	can	calculate	how

much	of	the	original	dataset	is	explained	by	this	new	transformation.	In

the	other	case,	we	can	iterate	through	the	explained	variance	vector	and

stop	at	a	particular	number	of	components,	k,	when	we

have	reached	a	desired	coverage.

When	implementing	a	principal	components	analysis,	there	are	several

strategies	for	computing	the	eigenvalues	and	eigenvectors.	In	the	end,	we

just	want	to	retrieve	the	transformed	data.	This	is	a	great	case	for	the

strategy	pattern	in	which	the	implementation	details	can	be	contained	in

separate	classes,	while	the	main	PCA	class	is	mostly	just	a

shell:



public	class	PCA	{

				

				private	final	PCAImplementation	pCAImplementation;

				public	PCA(RealMatrix	data,	PCAImplementation	pCAImplementation)	{

								this.pCAImplementation	=	pCAImplementation;

								this.pCAImplementation.compute(data);

				}

				public	RealMatrix	getPrincipalComponents(int	k)	{

								return	pCAImplementation.getPrincipalComponents(k);

				}

				

				public	RealMatrix	getPrincipalComponents(int	k,	RealMatrix	otherData)	{

								return	pCAImplementation.getPrincipalComponents(k,	otherData);

				}

				

				public	RealVector	getExplainedVariances()	{

								return	pCAImplementation.getExplainedVariances();

				}

				

				public	RealVector	getCumulativeVariances()	{

								RealVector	variances	=	getExplainedVariances();

								RealVector	cumulative	=	variances.copy();

								double	sum	=	0;

								for	(int	i	=	0;	i	<	cumulative.getDimension();	i++)	{

												sum	+=	cumulative.getEntry(i);

												cumulative.setEntry(i,	sum);

								}

								return	cumulative;

				}

				

				public	int	getNumberOfComponents(double	threshold)	{

								RealVector	cumulative	=	getCumulativeVariances();

								int	numComponents=1;

								for	(int	i	=	0;	i	<	cumulative.getDimension();	i++)	{

												numComponents	=	i	+	1;

												if(cumulative.getEntry(i)	>=	threshold)	{		

																break;

												}

								}

								return	numComponents;

				}

				

				public	RealMatrix	getPrincipalComponents(double	threshold)	{

								int	numComponents	=	getNumberOfComponents(threshold);

								return	getPrincipalComponents(numComponents);

				}

				

				public	RealMatrix	getPrincipalComponents(double	threshold,

								RealMatrix	otherData)	{

								int	numComponents	=	getNumberOfComponents(threshold);

								return	getPrincipalComponents(numComponents,	otherData);

				}

}



We	can	then	provide	an	interface	PCAImplementation	for

the	following	methods	of	decomposing	the	input	data	into	its	principal

components:

public	interface	PCAImplementation	{

				

				void	compute(RealMatrix	data);

				

				RealVector	getExplainedVariances();

				

				RealMatrix	getPrincipalComponents(int	numComponents);

				

				RealMatrix	getPrincipalComponents(int	numComponents,	RealMatrix	otherData);

}



Covariance	Method
One	method	for	calculating	the	PCA	is	by	finding	the	eigenvalue	decomposition	of	the	covariance	matrix
of	X.	The	principal

components	of	a	centered	matrix	X	are

the	eigenvectors	of	the	covariance:

This	method	of	covariance	calculation	can	be	computationally

intensive	because	it	requires	multiplying	together	two	potentially	large

matrices.	However,	in	Chapter	3,	we	explored

an	efficient	update	formula	for	computing	covariance	that	does	not

require	matrix	transposition.	When	using	the	Apache	Commons	Math	class

Covariance,	or	other	classes	that	implement	it	(e.g.,

MultivariateSummaryStatistics),	the	efficient	update

formula	is	used.	Then	the	covariance	C	can	be	decomposed	into	the	following:

The	columns	of	V	are	the

eigenvectors,	and	the	diagonal	components	of	D	are	the	eigenvalues.	The	Apache	Commons	Math

implementation	orders	the	eigenvalues	(and	corresponding	eigenvectors)

from	largest	to	smallest.	Typically,	we	want	only	k	components,	and	therefore	we	need	only	the	first	k
columns	of	V.	The	mean-centered	data

can	be	projected	onto	the	new	components	with	a	matrix

multiplication:

Here	is	an	implementation	of	a	principal	components	analysis	using

the	covariance	method:

public	class	PCAEIGImplementation	implements	PCAImplementation	{

				private	RealMatrix	data;

				private	RealMatrix	d;	//	eigenvalue	matrix



				private	RealMatrix	v;	//	eigenvector	matrix

				private	RealVector	explainedVariances;

				private	EigenDecomposition	eig;

				private	final	MatrixScaler	matrixScaler;

				public	PCAEIGImplementation()	{

								matrixScaler	=	new	MatrixScaler(MatrixScaleType.CENTER);

				}

				@Override

				public	void	compute(RealMatrix	data)	{

								this.data	=	data;

								eig	=	new	EigenDecomposition(new	Covariance(data).getCovarianceMatrix());

								d	=	eig.getD();

								v	=	eig.getV();

				}

				

				@Override

				public	RealVector	getExplainedVariances()	{

								int	n	=	eig.getD().getColumnDimension();	//colD	=	rowD

								explainedVariances	=	new	ArrayRealVector(n);

								double[]	eigenValues	=	eig.getRealEigenvalues();

								double	cumulative	=	0.0;

								for	(int	i	=	0;	i	<	n;	i++)	{

												double	var	=	eigenValues[i];

												cumulative	+=	var;

												explainedVariances.setEntry(i,	var);

								}

								/*	dividing	the	vector	by	the	last	(highest)	value	maximizes	to	1	*/

								return	explainedVariances.mapDivideToSelf(cumulative);

				}

				@Override

				public	RealMatrix	getPrincipalComponents(int	k)	{

								int	m	=	eig.getV().getColumnDimension();	//	rowD	=	colD

								matrixScaler.transform(data);

								return	data.multiply(eig.getV().getSubMatrix(0,	m-1,	0,	k-1));

				}

				@Override

				public	RealMatrix	getPrincipalComponents(int	numComponents,

								RealMatrix	otherData)	{

								int	numRows	=	v.getRowDimension();

								//	NEW	data	transformed	under	OLD	means

								matrixScaler.transform(otherData);

								return	otherData.multiply(

												v.getSubMatrix(0,	numRows-1,	0,	numComponents-1));

				}		

}

Then	it	can	be	used,	for	example,	to	get	the	first	three	principal

components,	or	to	get	all	the	components	that	provide	50	percent

explained	variance:	/*	use	the	eigenvalue	decomposition	implementation	*/	PCA	pca	=	new
PCA(data,	new	PCAEIGImplementation());

/*	get	first	three	components	*/	RealMatrix	pc3	=	pca.getPrincipalComponents(3);

/*	get	however	many	components	are	needed	to	satisfy	50%	explained	variance	*/

RealMatrix	pct	=	pca.getPrincipalComponents(.5);



SVD	Method
If	X	–	 	is	a	mean-centered	dataset	with	m	rows	and	n	columns,	the	principal	components	are	calculated

from	the	following:

Note	the	familiar	form	for	a	singular	value

decomposition,	A	=	UΣVT,	in	which	the	column	vectors	of	V	are	the	eigenvectors,	and	the	eigenvalues

are	derived	from	the	diagonal	of	Σ	via	 ;	m	is	the	number	of	rows	of	data.	After
performing	the	singular	value	decomposition	on	the

mean-centered	X,	the	projection	is	then

as	follows:

We’ve	kept	only	the	first	k	columns	of

U	and	the	k	×

k	upper-left	submatrix	of	Σ.	It	is	also	correct	to

compute	the	projection	with	the	original,	mean-centered	data	and	the

eigenvectors:

Here	we	keep	only	the	first	k	columns	of

V.	In	particular,	this	expression	is

used	when	we	are	transforming	a	new	set	of	data	with	the	existing

eigenvectors	and	means.	Note	that	the	means	are	those	that	the	PCA	was

trained	on,	not	the	means	of	the	input	data.	This	is	the	same	form	as	in

the	eigenvalue	method	in	the	preceding	section.

Apache	Commons	Math	implementation	is	compact	SVD	because	there	are	at

most	p	=

min(m,n)	singular	values,	so	there	is	no	need	to

calculate	the	full	SVD	as	discussed	in	Chapter	2.	Following	is	the	SVD	implementation	of	a	principal
components	analysis	and	is	the	preferred	method:

public	class	PCASVDImplementation	implements	PCAImplementation	{



				private	RealMatrix	u;

				private	RealMatrix	s;

				private	RealMatrix	v;

				private	MatrixScaler	matrixScaler;

				private	SingularValueDecomposition	svd;

				@Override

				public	void	compute(RealMatrix	data)	{

								MatrixScaler.center(data);

								svd	=	new	SingularValueDecomposition(data);

								u	=	svd.getU();

								s	=	svd.getS();

								v	=	svd.getV();

				}

				

				@Override

				public	RealVector	getExplainedVariances()	{

								double[]	singularValues	=	svd.getSingularValues();

								int	n	=	singularValues.length;

								int	m	=	u.getRowDimension();	//	number	of	rows	in	U	is	same	as	in	data

								RealVector	explainedVariances	=	new	ArrayRealVector(n);

								double	sum	=	0.0;

								for	(int	i	=	0;	i	<	n;	i++)	{

												double	var	=	Math.pow(singularValues[i],	2)	/	(double)(m-1);

												sum	+=	var;

												explainedVariances.setEntry(i,	var);

								}

								/*	dividing	the	vector	by	the	last	(highest)	value	maximizes	to	1	*/

								return	explainedVariances.mapDivideToSelf(sum);

								

				}

				@Override

				public	RealMatrix	getPrincipalComponents(int	numComponents)	{

								int	numRows	=	svd.getU().getRowDimension();

								/*	submatrix	limits	are	inclusive	*/

								RealMatrix	uk	=	u.getSubMatrix(0,	numRows-1,	0,	numComponents-1);

								RealMatrix	sk	=	s.getSubMatrix(0,	numComponents-1,	0,	numComponents-1);

								return	uk.multiply(sk);

				}

				@Override

				public	RealMatrix	getPrincipalComponents(int	numComponents,

								RealMatrix	otherData)	{

								//	center	the	(new)	data	on	means	from	original	data

								matrixScaler.transform(otherData);

								int	numRows	=	v.getRowDimension();

								//	subMatrix	indices	are	inclusive

								return	otherData.multiply(v.getSubMatrix(0,	numRows-1,	0,	numComponents-1));

				}

}

Then	to	implement	it,	we	use	the	following:	/*	use	the	singular	value	decomposition
implementation	*/	PCA	pca	=	new	PCA(data,	new	PCASVDImplementation());

/*	get	first	three	components	*/	RealMatrix	pc3	=	pca.getPrincipalComponents(3);

/*	get	however	many	components	are	needed	to	satisfy	50%	explained	variance	*/

RealMatrix	pct	=	pca.getPrincipalComponents(.5);



Creating	Training,	Validation,	and	Test	Sets
For	supervised	learning,	we	build	models	on	one	part	of	the	dataset,	and	then	make	a	prediction	using	the
test	set	and	see	whether	we	were	right	(using	the

known	labels	of	the	test	set).	Sometimes	we	need	a	third	set	during	the

training	process	for	validating	model	parameters,	called	the

validation	set.

The	training	set	is	used	to	train	the	model,	whereas	the	validation

set	is	used	for	model	selection.	A	test	set	is	used	once	at	the	very	end

to	calculate	the	model	error.	We	have	at	least	two	options.	First,	we	can

sample	random	integers	and	pick	lines	out	of	an	array	or	matrix.	Second,

we	can	reshuffle	the	data	itself	as	a	List	and	pull	off	the

sublists	of	length	we	need	for	each	type	of	set.



Index-Based	Resampling
Create	an	index	for	each	point	in	the	dataset:	public	class	Resampler	{

RealMatrix	features;	RealMatrix	labels;	List<Integer>	indices;	List<Integer>
trainingIndices;	List<Integer>	validationIndices;	List<Integer>	testingIndices;	int[]
rowIndices;	int[]	test;	int[]	validate;

public	Resampler(RealMatrix	features,	RealMatrix	labels)	{	this.features	=	features;
this.labels	=	labels;	indices	=	new	ArrayList<>();	}

public	void	calculateTestTrainSplit(double	testFraction,	long	seed)	{	Random	rnd	=	new
Random(seed);	for	(int	i	=	1;	i	<=	features.getRowDimension();	i++)	{	indices.add(i);	}
Collections.shuffle(indices,	rnd);	int	testSize	=	new	Long(Math.round(	testFraction	*
features.getRowDimension())).intValue();	/*	subList	has	inclusive	fromIndex	and
exclusive	toIndex	*/	testingIndices	=	indices.subList(0,	testSize);	trainingIndices	=
indices.subList(testSize,	features.getRowDimension());	}

public	RealMatrix	getTrainingFeatures()	{	int	numRows	=	trainingIndices.size();
rowIndices	=	new	int[numRows];	int	counter	=	0;	for	(Integer	trainingIndex	:
trainingIndices)	{	rowIndices[counter]	=	trainingIndex;	}	counter++;

int	numCols	=	features.getColumnDimension();	int[]	columnIndices	=	new	int[numCols];	for
(int	i	=	0;	i	<	numCols;	i++)	{	columnIndices[i]	=	i;	}	return
features.getSubMatrix(rowIndices,	columnIndices);	}	}

Here	is	an	example	using	the	Iris	dataset:	Iris	iris	=	new	Iris();

Resampler	resampler	=	new	Resampler(iris.getFeatures(),	iris.getLabels());
resampler.calculateTestTrainSplit(0.40,	0L);

RealMatrix	trainFeatures	=	resampler.getTrainingFeatures();	RealMatrix	trainLabels	=
resampler.getTrainingLabels();	RealMatrix	testFeatures	=
resampler.getTestingFeatures();	RealMatrix	testLabels	=	resampler.getTestingLabels();



List-Based	Resampling
In	some	cases,	we	may	have	defined	our	data	as	a	collection	of	objects.

For	example,	we	may	a	have	List	of	type	Record	that	holds	the	data	for	each	record	(row)	of	data.	It	is
straightforward

then	to	build	a	List-based	resampler	that	takes	a	generic

type	T:

public	class	Resampling<T>	{

				private	final	List<T>	data;

				private	final	int	trainingSetSize;

				private	final	int	testSetSize;

				private	final	int	validationSetSize;

				public	Resampling(List<T>	data,	double	testFraction,	long	seed)	{

								this(data,	testFraction,	0.0,	seed);

				}

				

				public	Resampling(List<T>	data,	double	testFraction,	

				double	validationFraction,	long	seed)	{

								this.data	=	data;

								validationSetSize	=	new	Double(

												validationFraction	*	data.size()).intValue();

								testSetSize	=	new	Double(testFraction	*	data.size()).intValue();

								trainingSetSize	=	data.size()	-	(testSetSize	+	validationSetSize);

								Random	rnd	=	new	Random(seed);

								Collections.shuffle(data,	rnd);

				}

				public	int	getTestSetSize()	{

								return	testSetSize;

				}

				public	int	getTrainingSetSize()	{

								return	trainingSetSize;

				}

				public	int	getValidationSetSize()	{

								return	validationSetSize;

				}

				

				public	List<T>	getValidationSet()	{

								return	data.subList(0,	validationSetSize);

				}

				

				public	List<T>	getTestSet()	{

								return	data.subList(validationSetSize,	validationSetSize	+	testSetSize);

				}

				

				public	List<T>	getTrainingSet()	{

								return	data.subList(validationSetSize	+	testSetSize,	data.size());

				}

}



Given	a	predefined	class	Record,	we	can	use	the

resampler	like	this:

Resampling<Record>	resampling	=	new	Resampling<>(data,	0.20,	0L);

//Resampling<Record>	resampling	=	new	Resampling<>(data,	0.20,	0.20,	0L);

List<Record>	testSet	=	resampling.getTestSet();

List<Record>	trainingSet	=	resampling.getTrainingSet();

List<Record>	validationSet	=	resampling.getValidationSet();



Mini-Batches
In	several	learning	algorithms,	it	is	advantageous	to	input	small	batches	of	data	(on	the	order	of	100	data
points)	randomly	sampled	from	a	much	larger	dataset.	We	can

reuse	the	code	from	our	MatrixResampler	for	this	task.	The

important	thing	to	remember	is	that	when	designating	batch	size,	we	are

specifically	implying	the	test	set,	not	the	training	set,	as	implemented

in	the	MatrixResampler:	public	class	Batch	extends	MatrixResampler	{

public	Batch(RealMatrix	features,	RealMatrix	labels)	{	super(features,	labels);	}

public	void	calcNextBatch(int	batchSize)	{

super.calculateTestTrainSplit(batchSize);	}

public	RealMatrix	getInputBatch()	{	return	super.getTestingFeatures();	}

public	RealMatrix	getTargetBatch()	{	return	super.getTestingLabels();	}	}



Encoding	Labels
When	labels	arrive	to	us	as	a	text	field,	such	as	red	or	blue,	we	convert	them	to	integers	for	further

processing.

NOTE
When	dealing	with	classification	algorithms,	we	refer	to	each

unique	instance	of	the	outcome’s	variables	as	a	class.	Recall	that	class	is	a	Java	keyword,	and	we	will	have	to	use	other

terms	instead,	such	as	className,	classLabel,

or	classes	for	plural.	When	using	classes	for

the	name	of	a	List,	be	aware	of	your	IDE’s	code	completion

when	building	a	for...each	loop.



A	Generic	Encoder
Here	is	an	implementation	of	a	label	encoder	for	a	generic	type	T.	Note	that	this	system	creates	classes
starting	at	0	through	n	-	1	classes.	In	other	words,	the	resulting	class	is	the	position	in	the

ArrayList:

public	class	LabelEncoder<T>	{

				private	final	List<T>	classes;

				

				public	LabelEncoder(T[]	labels)	{

								classes	=	Arrays.asList(labels);

				}

				public	List<T>	getClasses()	{

								return	classes;

				}

				public	int	encode(T	label)	{

								return	classes.indexOf(label);

				}

				public	T	decode(int	index)	{

								return	classes.get(index);

				}

}

Here	is	an	example	of	how	you	might	use	label	encoding	with	real

data:

String[]	stringLabels	=	{"Sunday",	"Monday",	"Tuesday"};

LabelEncoder<String>	stringEncoder	=	new	LabelEncoder<>(stringLabels);

/*	note	that	classes	are	in	the	order	of	the	original	String	array	*/

System.out.println(stringEncoder.getClasses());	//[Sunday,	Monday,	Tuesday]

for	(Datum	datum	:	data)	{

				int	classNumber	=	stringEncoder.encode(datum.getLabel);

				//	do	something	with	classes	i.e.	add	to	List	or	Matrix

}

Note	that	in	addition	to	String	types,	this	also

works	for	any	of	the	boxed	types,	but	most	likely	your	labels	will	take

on	values	suitable	for	Short,	Integer,

Long,	Boolean,	and	Character.	For

example,	Boolean	labels	could	be	true/false	bools,

Character	could	be	Y/N	for	yes/no	or	M/F	for	male/female	or

even	T/F	for	true/false.	It	all	depends	on	how	someone	else	originally



coded	the	labels	in	the	data	file	you	are	reading	from.	Labels	are

unlikely	to	be	in	the	form	of	a	floating-point	number.	If	this	is	the

case,	you	probably	have	a	regression	problem	instead	of	a	classification

problem	(that	is,	you	are	mistakenly	confusing	a	continuous	variable	for	a	discrete	one).	An	example	using
Integer	type	labels	is	shown	in	the	next	section.



One-Hot	Encoding
In	some	cases,	it	will	be	more	efficient	to	convert	a	multinomial	label	into	a

multivariate	binomial.	This	is	analogous	to	converting	an	integer	to

binary	form,	except	that	we	have	the	requirement	that	only	one	position

can	be	hot	(equal	to	1)	at	a	time.	For	example,	we

can	encode	three	string	labels	as	integers,	or	represent	each	string	as

a	position	in	a	binary	string:

Sunday		0		100

Monday		1		010

Tuesday	2		001

When	using	a	List	for	encoding	the	labels,	we	use	the

following:

public	class	OneHotEncoder	{

				private	int	numberOfClasses;

				public	OneHotEncoder(int	numberOfClasses)	{

								this.numberOfClasses	=	numberOfClasses;

				}

				public	int	getNumberOfClasses()	{

								return	numberOfClasses;

				}

				public	int[]	encode(int	label)	{

								int[]	oneHot	=	new	int[numberOfClasses];

								oneHot[label]	=	1;

								return	oneHot;

				}

				

				public	int	decode(int[]	oneHot)	{

								return	Arrays.binarySearch(oneHot,	1);

				}

}

In	the	case	where	the	labels	are	strings,	first	encode	the	labels

into	integers	by	using	a	LabelEncoder	instance,	and	then

convert	the	integer	labels	to	one	hot	by	using	a

OneHotEncoder	instance.

String[]	stringLabels	=	{"Sunday",	"Monday",	"Tuesday"};

LabelEncoder<String>	stringEncoder	=	new	LabelEncoder<>(stringLabels);



int	numClasses	=	stringEncoder.getClasses.size();

OneHotEncoder	oneHotEncoder	=	new	oneHotEncoder(numClasses);

for	(Datum	datum	:	data)	{

				int	classNumber	=	stringEncoder.encode(datum.getLabel);

				int[]	oneHot				=	oneHotEncoder.encode(classNumber);

				//	do	something	with	classes	i.e.	add	to	List	or	Matrix

}

Then	what	about	the	reverse?	Say	we	have	a	predictive	model	that

returns	the	classes	we	have	designated	in	a	learning	process.	(Usually,

a	learning	process	outputs	probabilities,	but	we	can	assume	that	we	have

converted	those	to	classes	here.)	First	we	need	to	convert	the	one-hot

output	to	its	class.	Then	we	need	to	convert	the	class	back	to	the

original	label,	as	shown	here:

[1,	0,	0]

[0,	0,	1]

[1,	0,	0]

[0,	1,	0]

Then	we	need	to	convert	output	predictions	from	one	hot:	for(Integer[]	prediction:	predictions)
{	int	classLabel	=	oneHotEncoder.decode(prediction);	String	label	=
labelEncoder.decode(classLabel);

}

//	predicted	labels	are	Sunday,	Tuesday,	Sunday,	Monday



Chapter	5.	Learning	and	Prediction

In	this	chapter,	we’ll	learn	what	our	data	means	and	how	it	drives	our	decision	processes.	Learning	about
our	data	gives	us	knowledge,	and	knowledge	enables	us	to	make	reasonable	guesses	about	what	to	expect
in	the	future.	This	is	the	reason	for	the	existence	of	data	science:	learning	enough	about	the	data	so	we	can
make	predictions	on	newly	arriving	data.	This	can	be	as	simple	as	categorizing	data	into	groups	or
clusters.	It	can	span	a	much	broader	set	of	processes	that	culminate	(ultimately)	in	the	path	to	artificial
intelligence.	Learning	is	divided	into	two	major	categories:	unsupervised	and	supervised.

In	general,	we	think	of	data	as	having	variates	X	and	responses	Y,	and	our	goal	is	to	build	a	model	using
X	so	that	we	can	predict	what	happens	when	we	put	in	a	new	X.	If	we	have	the	Y,	we	can	“supervise”	the
building	of	the	model.	In	many	cases,	we	have	only	the	variates	X.	The	model	will	then	have	to	be	built	in
an	unsupervised	manner.	Typical	unsupervised	methods	include	clustering,	whereas	supervised	learning
may	include	any	of	the	regression	methods	(e.g.,	linear	regression)	or	classification	methods	such	as	naive
Bayes,	logistic,	or	deep	neural	net	classifiers.	Many	other	methods	and	permutations	of	those	methods
exist,	and	covering	them	all	would	be	impossible.	Instead,	here	we	dive	into	a	few	of	the	most	useful
ones.



Learning	Algorithms
A	few	learning	algorithms	are	prevalent	in	a	large	variety	of	techniques.	In	particular,	we	often	use	an
iterative	learning	process	to	repeatedly	optimize	or	update	the	model	parameters	we	are	searching	for.
Several	methods	are	available	for	optimizing	the	parameters,	and	we	cover	the	gradient	descent	method
here.



Iterative	Learning	Procedure
One	standard	way	to	learn	a	model	is	to	loop	over	a	prediction	state	and	update	the	state.	Regression,
clustering	and	expectation-maximization	(EM)	algorithms	all	benefit	from	similar	forms	of	an	iterative
learning	procedure.	Our	strategy	here	is	to	create	a	class	that	contains	all	the	boilerplate	iterative
machinery,	and	then	allow	subclasses	to	define	the	explicit	form	of	the	prediction	and	parameter	update
methods.

public	class	IterativeLearningProcess	{

				private	boolean	isConverged;

				private	int	numIterations;

				private	int	maxIterations;

				private	double	loss;

				private	double	tolerance;

				private	int	batchSize;	//	if	==	0	then	uses	ALL	data

				private	LossFunction	lossFunction;

				public	IterativeLearningProcess(LossFunction	lossFunction)	{

								this.lossFunction	=	lossFunction;

								loss	=	0;

								isConverged	=	false;

								numIterations	=	0;

								maxIterations	=	200;

								tolerance	=	10E-6;

								batchSize	=	100;

				}

				public	void	learn(RealMatrix	input,	RealMatrix	target)	{

								double	priorLoss	=	tolerance;

								numIterations	=	0;

								loss	=	0;

								isConverged	=	false;

								Batch	batch	=	new	Batch(input,	target);

								RealMatrix	inputBatch;

								RealMatrix	targetBatch;

								while(numIterations	<	maxIterations	&&	!isConverged)	{

												if(batchSize	>	0	&&	batchSize	<	input.getRowDimension())	{

																batch.calcNextBatch(batchSize);

																inputBatch	=	batch.getInputBatch();

																targetBatch	=	batch.getTargetBatch();

												}	else	{

																inputBatch	=	input;

																targetBatch	=	target;

												}

												RealMatrix	outputBatch	=	predict(inputBatch);

												loss	=	lossFunction.getMeanLoss(outputBatch,	targetBatch);

												if(Math.abs(priorLoss	-	loss)	<	tolerance)	{

																isConverged	=	true;

												}	else	{

																update(inputBatch,	targetBatch,	outputBatch);

																priorLoss	=	loss;

												}

												numIterations++;

								}

				}

				

				public	RealMatrix	predict(RealMatrix	input)	{

								throw	new	UnsupportedOperationException("Implement	the	predict	method!");

				}

				

				public	void	update(RealMatrix	input,	RealMatrix	target,	RealMatrix	output)	{

								throw	new	UnsupportedOperationException("Implement	the	update	method!");

				}

			

}



Gradient	Descent	Optimizer
One	way	to	learn	parameters	is	via	a	gradient	descent	(an	iterative	first-order	optimization	algorithm).
This	optimizes	the	parameters	by	incrementally	updating	them	with	corrective	learning	(the	error	is	used).
The	term	stochastic	means	that	we	add	one	point	at	a	time,	as	opposed	to	using	the	whole	batch	of	data	at
once.	In	practice,	it	helps	to	use	a	mini-batch	of	about	100	points	at	a	time,	chosen	at	random	in	each	step
of	the	iterative	learning	process.	The	general	idea	is	to	minimize	a	loss	function	such	that	parameter
updates	are	given	by	the	following:

The	parameter	update	is	related	to	the	gradient	of	an	objective	function	 	such	that

For	deep	networks,	we	will	need	to	back-propagate	this	error	through	the	network.	We	cover	this	in	detail
in	“Deep	Networks”.

For	the	purposes	of	this	chapter,	we	can	define	an	interface	that	returns	a	parameter	update,	given	a
particular	gradient.	Method	signatures	for	both	matrix	and	vector	forms	are	included:

public	interface	Optimizer	{

				RealMatrix	getWeightUpdate(RealMatrix	weightGradient);

				RealVector	getBiasUpdate(RealVector	biasGradient);

}

The	most	common	case	of	gradient	descent	is	to	subtract	the	scaled	gradient	from	the	existing	parameter
such	that

The	update	rule	is	as	follows:

The	most	common	type	of	stochastic	gradient	descent	(SGD)	is	adding	the	update	to	the	current
parameters	by	using	a	learning	rate:

public	class	GradientDescent	implements	Optimizer	{

				

				private	double	learningRate;

				public	GradientDescent(double	learningRate)	{

								this.learningRate	=	learningRate;

				}

				

				@Override

				public	RealMatrix	getWeightUpdate(RealMatrix	weightGradient)	{

								return	weightGradient.scalarMultiply(-1.0	*	learningRate);



				}

				@Override

				public	RealVector	getBiasUpdate(RealVector	biasGradient)	{

								return	biasGradient.mapMultiply(-1.0	*	learningRate);

				}	

}

One	common	extension	to	this	optimizer	is	the	inclusion	of	momentum,	which	slows	the	process	as	the
optimum	is	reached,	avoiding	an	overshoot	of	the	correct	parameters:

The	update	rule	is	as	follows:

We	see	that	adding	momentum	is	easily	accomplished	by	extending	the	GradientDescent	class,	making
provisions	for	storing	the	most	recent	update	to	the	weights	and	bias	for	calculation	of	the	next	update.
Note	that	the	first	time	around,	no	prior	updates	will	be	stored	yet,	so	a	new	set	is	created	(and	initialized
to	zero):

public	class	GradientDescentMomentum	extends	GradientDescent	{

				

				private	final	double	momentum;

				private	RealMatrix	priorWeightUpdate;

				private	RealVector	priorBiasUpdate;

				public	GradientDescentMomentum(double	learningRate,	double	momentum)	{

								super(learningRate);

								this.momentum	=	momentum;

								priorWeightUpdate	=	null;

								priorBiasUpdate	=	null;

				}

				

				@Override

				public	RealMatrix	getWeightUpdate(RealMatrix	weightGradient)	{

								//	creates	matrix	of	zeros	same	size	as	gradients	if	

								//	one	does	not	already	exist

								if(priorWeightUpdate	==	null)	{

												priorWeightUpdate	=	

																new	BlockRealMatrix(weightGradient.getRowDimension(),

																																				weightGradient.getColumnDimension());

								}

								RealMatrix	update	=	priorWeightUpdate

																												.scalarMultiply(momentum)

																												.subtract(super.getWeightUpdate(weightGradient));

								priorWeightUpdate	=	update;

								return	update;

				}

				@Override

				public	RealVector	getBiasUpdate(RealVector	biasGradient)	{

								if(priorBiasUpdate	==	null)	{

												priorBiasUpdate	=	new	ArrayRealVector(biasGradient.getDimension());

								}

								RealVector	update	=	priorBiasUpdate

																												.mapMultiply(momentum)

																												.subtract(super.getBiasUpdate(biasGradient));

								priorBiasUpdate	=	update;

								return	update;

				}

}



This	is	an	ongoing	and	active	field.	By	using	this	methodology,	it	is	easy	to	extend	capabilities	by	using
ADAM	or	ADADELTA	algorithms,	for	example.



Evaluating	Learning	Processes
Iterative	processes	can	operate	indefinitely.	We	always	designate	a	maximum	number	of	iterations	we
will	allow	so	that	any	process	cannot	just	run	away	and	compute	forever.	Typically,	this	is	on	the	order	of
103	to	106	iterations,	but	there’s	no	rule.	There	is	a	way	to	stop	the	iterative	process	early	if	a	certain
criteria	has	been	met.	We	call	this	convergence,	and	the	idea	is	that	our	process	has	converged	on	an
answer	that	appears	to	be	a	stable	point	in	the	computation	(e.g.,	the	free	parameters	are	no	longer
changing	in	a	large	enough	increment	to	warrant	the	continuation	of	the	process).	Of	course,	there	is	more
than	one	way	to	do	this.	Although	certain	learning	techniques	lend	themselves	to	specific	convergence
criteria,	there	is	no	universal	method.



Minimizing	a	Loss	Function
A	loss	function	designates	the	loss	between	predicted	and	target	outputs.	It	is	also	known	as	a	cost

function	or	error	term.	Given	a	singular	input	vector	x,	output	vector	y,	and	prediction	vector	 ,	the	loss

of	the	sample	is	denoted	with	 .	The	form	of	the	loss	function	depends	on	the	underlying
statistical	distribution	of	the	output	data.	In	most	cases,	the	loss	over	p-dimensional	output	and	prediction
is	the	sum	of	the	scalar	losses	per	dimension:

Because	we	often	deal	with	batches	of	data,	we	then	calculate	the	mean	loss	 	over	the	whole
batch.	When	we	talk	about	minimizing	a	loss	function,	we	are	minimizing	the	mean	loss	over	the	batch	of
data	that	was	input	into	the	learning	algorithm.	In	many	cases,	we	can	use	the	gradient	of	the	loss	

	to	apply	corrective	learning.	Here	the	gradient	of	the	loss	with	respect	to	the	predicted	value	

	can	usually	be	computed	with	ease.	The	idea	is	then	to	return	a	loss	gradient	that	is	the	same	shape	as
its	input.

WARNING
In	some	texts,	the	output	is	denoted	as	 	(for	truth	or	target),	and	the	prediction	is	denoted	as	 .	In	this	text,	we	denote	the

output	as	 	and	prediction	as	 .	Note	that	 	has	different	meanings	in	these	two	cases.

Many	forms	are	dependent	on	the	type	of	variables	(continuous	or	discrete	or	both)	and	the	underlying
statistical	distribution.	However,	a	common	theme	makes	using	an	interface	ideal.	A	reason	for	leaving
implementation	up	to	a	specific	class	is	that	it	takes	advantage	of	optimized	algorithms	for	linear	algebra
routines.

public	interface	LossFunction	{				

				public	double	getSampleLoss(double	predicted,	double	target);

				public	double	getSampleLoss(RealVector	predicted,	RealVector	target);

				public	double	getMeanLoss(RealMatrix	predicted,	RealMatrix	target);

				public	double	getSampleLossGradient(double	predicted,	double	target);

				public	RealVector	getSampleLossGradient(RealVector	predicted,

																																												RealVector	target);

				public	RealMatrix	getLossGradient(RealMatrix	predicted,	RealMatrix	target);

}

Linear	loss
Also	known	as	the	absolute	loss,	the	linear	loss	is	the	absolute	difference	between	the	output	and	the
prediction:



The	gradient	is	misleading	because	of	the	absolute-value	signs,	which	cannot	be	ignored:

The	gradient	is	not	defined	at	 	because	 	has	a	discontinuity	there.	However,	we	can
programmatically	designate	the	gradient	function	to	set	its	value	to	0	when	the	gradient	is	zero	to	avoid	a
1/0	exception.	In	this	way,	the	gradient	function	returns	only	a	–1,	0,	or	1.	Ideally,	we	then	use	the
mathematical	function	sign(x),	which	returns	only	–1,	0,	or	1,	depending	on	the	respective	input	values	of
x	<	0,	x	=	0	and	x	>	0.

public	class	LinearLossFunction	implements	LossFunction	{

				@Override

				public	double	getSampleLoss(double	predicted,	double	target)	{

								return	Math.abs(predicted	-	target);

				}

				@Override

				public	double	getSampleLoss(RealVector	predicted,	RealVector	target)	{

								return	predicted.getL1Distance(target);

				}

				@Override

				public	double	getMeanLoss(RealMatrix	predicted,	RealMatrix	target)	{

								SummaryStatistics	stats	=	new	SummaryStatistics();

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												double	dist	=	getSampleLoss(predicted.getRowVector(i),

												target.getRowVector(i));

												stats.addValue(dist);

								}

								return	stats.getMean();

				}

				@Override

				public	double	getSampleLossGradient(double	predicted,	double	target)	{

								return	Math.signum(predicted	-	target);	//	-1,	0,	1

				}

				@Override

				public	RealVector	getSampleLossGradient(RealVector	predicted,

								RealVector	target)	{

								return	predicted.subtract(target).map(new	Signum());

				}

				//YOUDO	SparseToSignum	would	be	nice!!!	only	process	elements	of	the	iterable

				@Override

				public	RealMatrix	getLossGradient(RealMatrix	predicted,	RealMatrix	target)	{

								RealMatrix	loss	=	new	Array2DRowRealMatrix(predicted.getRowDimension(),	

								predicted.getColumnDimension());

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												loss.setRowVector(i,	getSampleLossGradient(predicted.getRowVector(i),	

												target.getRowVector(i)));

								}

								return	loss;

				}



				

}

Quadratic	loss
A	generalized	form	for	computing	the	error	of	a	predictive	process	is	by	minimizing	a	distance	metric
such	as	L1	or	L2	over	the	entire	dataset.	For	a	particular	prediction-target	pair,	the	quadratic	error	is	as
follows:

An	element	of	the	sample	loss	gradient	is	then	as	follows:

An	implementation	of	a	quadratic	loss	function	follows:

public	class	QuadraticLossFunction	implements	LossFunction	{

				@Override

				public	double	getSampleLoss(double	predicted,	double	target)	{

								double	diff	=	predicted	-	target;

								return	0.5	*	diff	*	diff;

				}			

				@Override

				public	double	getSampleLoss(RealVector	predicted,	RealVector	target)	{

								double	dist	=	predicted.getDistance(target);

								return	0.5	*	dist	*	dist;

				}

				@Override

				public	double	getMeanLoss(RealMatrix	predicted,	RealMatrix	target)	{

								SummaryStatistics	stats	=	new	SummaryStatistics();

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												double	dist	=	getSampleLoss(predicted.getRowVector(i),

																																								target.getRowVector(i));

												stats.addValue(dist);

								}

								return	stats.getMean();

				}

				@Override

				public	double	getSampleLossGradient(double	predicted,	double	target)	{

								return	predicted	-	target;

				}

				@Override

				public	RealVector	getSampleLossGradient(RealVector	predicted,

								RealVector	target)	{

								return	predicted.subtract(target);

				}

				@Override

				public	RealMatrix	getLossGradient(RealMatrix	predicted,	RealMatrix	target)	{

								return	predicted.subtract(target);

				}

}



Cross-entropy	loss
Cross	entropy	is	great	for	classification	(e.g.,	logistics	regression	or	neural	nets).	We	discussed	the
origins	of	cross	entropy	in	Chapter	3.	Because	cross	entropy	shows	similarity	between	two	samples,	it
can	be	used	for	measuring	agreement	between	known	and	predicted	values.	In	the	case	of	learning

algorithms,	we	equate	p	with	the	known	value	y,	and	q	with	the	predicted	value	 .	We	set	the	loss	equal

to	the	cross	entropy	 	such	that	 	where	 	is	the	target	(label)
and	 	is	the	i-th	predicted	value	for	each	class	k	in	a	K	multiclass	output.	The	cross	entropy	(the
loss	per	sample)	is	then	as	follows:

There	are	several	common	forms	for	cross	entropy	and	its	associated	loss	function.

Bernoulli
In	the	case	of	Bernoulli	output	variates,	the	known	outputs	y	are	binary,	where	the	prediction	probability

is	 ,	giving	a	cross-entropy	loss:

The	sample	loss	gradient	is	then	as	follows:

Here	is	an	implementation	of	the	Bernoulli	cross-entropy	loss:

public	class	CrossEntropyLossFunction	implements	LossFunction	{

				@Override

				public	double	getSampleLoss(double	predicted,	double	target)	{

								return	-1.0	*	(target	*	((predicted>0)?FastMath.log(predicted):0)

												+	(1.0	-	target)*(predicted<1?FastMath.log(1.0-predicted):0));

				}

				@Override

				public	double	getSampleLoss(RealVector	predicted,	RealVector	target)	{

								double	loss	=	0.0;

								for	(int	i	=	0;	i	<	predicted.getDimension();	i++)	{

												loss	+=	getSampleLoss(predicted.getEntry(i),	target.getEntry(i));

								}



								return	loss;

				}

				@Override

				public	double	getMeanLoss(RealMatrix	predicted,	RealMatrix	target)	{

								SummaryStatistics	stats	=	new	SummaryStatistics();

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												stats.addValue(getSampleLoss(predicted.getRowVector(i),

												target.getRowVector(i)));

								}

								return	stats.getMean();

				}

				@Override

				public	double	getSampleLossGradient(double	predicted,	double	target)	{

								//	NOTE	this	blows	up	if	predicted	=	0	or	1,	which	it	should	never	be

								return	(predicted	-	target)	/	(predicted	*	(1	-	predicted));

				}

				@Override

				public	RealVector	getSampleLossGradient(RealVector	predicted,	

																																												RealVector	target)	{

								RealVector	loss	=	new	ArrayRealVector(predicted.getDimension());

								for	(int	i	=	0;	i	<	predicted.getDimension();	i++)	{

												loss.setEntry(i,	getSampleLossGradient(predicted.getEntry(i),	

												target.getEntry(i)));

								}

								return	loss;

				}

				@Override

				public	RealMatrix	getLossGradient(RealMatrix	predicted,	RealMatrix	target)	{

								RealMatrix	loss	=	new	Array2DRowRealMatrix(predicted.getRowDimension(),	

								predicted.getColumnDimension());

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												loss.setRowVector(i,	getSampleLossGradient(predicted.getRowVector(i),	

												target.getRowVector(i)));

								}

								return	loss;

				}

}

This	expression	is	most	often	used	with	the	logistic	output	function.

Multinomial
When	the	output	is	multiclass	(k	=	0,1,2	…	K	–	1)	and	transformed	to	a	set	of	binary	outputs	via	one-hot-
encoding,	the	cross	entropy	loss	is	the	sum	over	all	possible	classes:

However,	in	one-hot	encoding,	only	one	dimension	has	y	=	1	and	the	rest	are	y	=	0	(a	sparse	matrix).
Therefore,	the	sample	loss	is	also	a	sparse	matrix.	Ideally,	we	could	simplify	this	calculation	by	taking
that	into	account.

The	sample	loss	gradient	is	as	follows:



Because	most	of	the	loss	matrix	will	be	zeros,	we	need	to	calculate	the	gradient	only	for	locations	where
y	=	1.	This	form	is	used	primarily	with	the	softmax	output	function:

public	class	OneHotCrossEntropyLossFunction	implements	LossFunction	{

				@Override

				public	double	getSampleLoss(double	predicted,	double	target)	{

								return	predicted	>	0	?	-1.0	*	target	*	FastMath.log(predicted)	:	0;

				}

				@Override

				public	double	getSampleLoss(RealVector	predicted,	RealVector	target)	{

								double	sampleLoss	=	0.0;

								for	(int	i	=	0;	i	<	predicted.getDimension();	i++)	{

												sampleLoss	+=	getSampleLoss(predicted.getEntry(i),

																																								target.getEntry(i));

								}

								return	sampleLoss;

				}

				@Override

				public	double	getMeanLoss(RealMatrix	predicted,	RealMatrix	target)	{

								SummaryStatistics	stats	=	new	SummaryStatistics();

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												stats.addValue(getSampleLoss(predicted.getRowVector(i),

												target.getRowVector(i)));

								}

								return	stats.getMean();

				}

				@Override

				public	double	getSampleLossGradient(double	predicted,	double	target)	{

								return	-1.0	*	target	/	predicted;

				}

				@Override

				public	RealVector	getSampleLossGradient(RealVector	predicted,

																																												RealVector	target)	{

								return	target.ebeDivide(predicted).mapMultiplyToSelf(-1.0);

				}

				@Override

				public	RealMatrix	getLossGradient(RealMatrix	predicted,	RealMatrix	target)	{

								RealMatrix	loss	=	new	Array2DRowRealMatrix(predicted.getRowDimension(),	

								predicted.getColumnDimension());

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												loss.setRowVector(i,	getSampleLossGradient(predicted.getRowVector(i),	

												target.getRowVector(i)));

								}

								return	loss;

				}

}

Two-Point
When	the	output	is	binary	but	takes	on	the	values	of	–1	and	1	instead	of	0	and	1,	we	can	rescale	for	use

with	the	Bernoulli	expression	with	the	substitutions	 	and	 :



The	sample	loss	gradient	is	as	follows:

The	Java	code	is	shown	here:

public	class	TwoPointCrossEntropyLossFunction	implements	LossFunction	{

				@Override

				public	double	getSampleLoss(double	predicted,	double	target)	{

								//	convert	-1:1	to	0:1	scale

								double	y	=	0.5	*	(predicted	+	1);

								double	t	=	0.5	*	(target	+	1);

								return	-1.0	*	(t	*	((y>0)?FastMath.log(y):0)	+

																(1.0	-	t)*(y<1?FastMath.log(1.0-y):0));

				}

				@Override

				public	double	getSampleLoss(RealVector	predicted,	RealVector	target)	{

								double	loss	=	0.0;

								for	(int	i	=	0;	i	<	predicted.getDimension();	i++)	{

												loss	+=	getSampleLoss(predicted.getEntry(i),	target.getEntry(i));

								}

								return	loss;

				}

				@Override

				public	double	getMeanLoss(RealMatrix	predicted,	RealMatrix	target)	{

								SummaryStatistics	stats	=	new	SummaryStatistics();

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												stats.addValue(getSampleLoss(predicted.getRowVector(i),

												target.getRowVector(i)));

								}

								return	stats.getMean();

				}

				@Override

				public	double	getSampleLossGradient(double	predicted,	double	target)	{

								return	(predicted	-	target)	/	(1	-	predicted	*	predicted);

				}

				@Override

				public	RealVector	getSampleLossGradient(RealVector	predicted,

																																												RealVector	target)	{

								RealVector	loss	=	new	ArrayRealVector(predicted.getDimension());

								for	(int	i	=	0;	i	<	predicted.getDimension();	i++)	{

												loss.setEntry(i,	getSampleLossGradient(predicted.getEntry(i),	

												target.getEntry(i)));

								}

								return	loss;

				}

				@Override

				public	RealMatrix	getLossGradient(RealMatrix	predicted,	RealMatrix	target)	{

								RealMatrix	loss	=	new	Array2DRowRealMatrix(predicted.getRowDimension(),	

								predicted.getColumnDimension());

								for	(int	i	=	0;	i	<	predicted.getRowDimension();	i++)	{

												loss.setRowVector(i,	getSampleLossGradient(predicted.getRowVector(i),	

												target.getRowVector(i)));



								}

								return	loss;

				}

}

This	form	of	loss	is	compatible	with	a	tanh	activation	function.



Minimizing	the	Sum	of	Variances
When	data	is	split	into	more	than	one	group,	we	can	monitor	the	spread	of	the	group	from	its	mean
position	via	the	variance.	Because	variances	add,	we	can	define	a	metric	s	over	n	groups,	where	 	is	the
variance	of	each	group:

As	s	decreases,	it	signifies	that	the	overall	error	of	the	procedure	is	also	decreasing.	This	works	great	for
clustering	techniques,	such	as	k-means,	which	are	based	on	finding	the	mean	value	or	center	point	of	each
cluster.



Silhouette	Coefficient
In	unsupervised	learning	techniques	such	as	clustering,	we	seek	to	discover	how	closely	packed	each
group	of	points	is.	The	silhouette	coefficient	is	a	metric	that	relates	the	difference	between	the	minimum
distance	inside	any	given	cluster	and	its	nearest	cluster.	The	silhouette	coefficient,	s,	is	the	average	over
all	distances	 	for	each	sample;	a	=	the	mean	distance	between	that	sample	and	all	other	points	in	the
class,	and	b	=	the	mean	distance	between	that	sample	and	all	the	points	in	the	next	nearest	cluster:

Then	the	silhouette	score	is	the	mean	of	all	the	sample	silhouette	coefficients:

The	silhouette	score	is	between	–1	and	1,	where	–1	is	incorrect	clustering,	1	is	highly	dense	clustering,
and	0	indicates	overlapping	clusters.	s	increases	as	clusters	are	dense	and	well	separated.	The	goal	is	in
monitor	processes	for	a	maximal	value	of	s.	Note	that	the	silhouette	coefficient	is	defined	only	for	2	<=
nlabels	<=	nsamples	–	1.	Here	is	the	Java	code:

public	class	SilhouetteCoefficient	{

				List<Cluster<DoublePoint>>	clusters;

				double	coefficient;

				int	numClusters;

				int	numSamples;

				public	SilhouetteCoefficient(List<Cluster<DoublePoint>>	clusters)	{

								this.clusters	=	clusters;

								calculateMeanCoefficient();

				}

				private	void	calculateMeanCoefficient()	{

								SummaryStatistics	stats	=	new	SummaryStatistics();

								int	clusterNumber	=	0;

								for	(Cluster<DoublePoint>	cluster	:	clusters)	{

												for	(DoublePoint	point	:	cluster.getPoints())	{

																double	s	=	calculateCoefficientForOnePoint(point,	clusterNumber);

																stats.addValue(s);

												}

												clusterNumber++;

								}

								coefficient	=	stats.getMean();

				}

				

				private	double	calculateCoefficientForOnePoint(DoublePoint	onePoint,	

				int	clusterLabel)	{

								

								/*	all	other	points	will	compared	to	this	one	*/

								RealVector	vector	=	new	ArrayRealVector(onePoint.getPoint());



								double	a	=	0;

								double	b	=	Double.MAX_VALUE;

								int	clusterNumber	=	0;

								for	(Cluster<DoublePoint>	cluster	:	clusters)	{

												SummaryStatistics	clusterStats	=	new	SummaryStatistics();

												for	(DoublePoint	otherPoint	:	cluster.getPoints())	{

																RealVector	otherVector	=	

																				new	ArrayRealVector(otherPoint.getPoint());

																double	dist	=	vector.getDistance(otherVector);

																clusterStats.addValue(dist);

												}

												double	avgDistance	=	clusterStats.getMean();

												if(clusterNumber==clusterLabel)	{

																/*	we	have	included	a	0	distance	of	point	with	itself	*/

																/*	and	need	to	subtract	it	out	of	the	mean	*/

																double	n	=	new	Long(clusterStats.getN()).doubleValue();

																double	correction	=	n	/	(n	-	1.0);

																a	=	correction	*	avgDistance;

												}	else	{

																b	=	Math.min(avgDistance,	b);

												}

												clusterNumber++;

								}

								return	(b-a)	/	Math.max(a,	b);

				}

}



Log-Likelihood
In	unsupervised	learning	problems	for	which	each	outcome	prediction	has	a	probability	associated	with
it,	we	can	utilize	the	log-likelihood.	One	particular	example	is	the	Gaussian	clustering	example	in	this
chapter.	For	this	expectation-maximization	algorithm,	a	mixture	of	multivariate	normal	distributions	are
optimized	to	fit	the	data.	Each	data	point	has	a	probability	density	 	associated	with	it,	given	the
overlying	model,	and	the	log-likelihood	can	be	computed	as	the	mean	of	the	log	of	the	probabilities	for
each	point:

We	can	then	accumulate	the	average	log-likelihood	over	all	the	data	points	 .	In	the	case	of	the
Gaussian	clustering	example,	we	can	obtain	this	parameter	directly	via	the
MultivariateNormalMixtureExpectationMaximization.getLogLikelihood()	method.



Classifier	Accuracy
How	do	we	know	how	accurate	a	classifier	really	is?	A	binary	classification	scheme	has	four	possible
outcomes:

1.	 true	positive	(TP)	—	both	data	and	prediction	have	the	value	of	1

2.	 true	negative	(TN)	—	both	data	and	prediction	have	a	value	of	0

3.	 false	positive	(FP)	—	the	data	is	0	and	prediction	is	1

4.	 false	negative	(FN)	—	the	data	is	1	and	the	prediction	is	0

Given	a	tally	of	each	of	the	four	possible	outcomes,	we	can	calculate,	among	other	things,	the	accuracy	of
the	classifier.

Accuracy	is	calculated	as	follows:

Or,	considering	that	the	denominator	is	the	total	number	of	rows	in	the	dataset	N,	the	expression	is
equivalent	to	the	following:

We	can	then	calculate	the	accuracy	for	each	dimension.	The	average	of	the	accuracy	vector	is	the	average
accuracy	of	the	classifier.	This	is	also	the	Jaccard	score.

In	the	special	case	that	we	are	using	one-hot-encoding	we	require	only	true	positives	and	the	accuracy	per
dimension	is	then	as	folllows:

Nt	is	the	total	class	count	(of	1s)	for	that	dimension.	The	accuracy	score	for	the	classifier	is	then	as
follows:



In	this	implementation,	we	have	two	use	cases.	In	one	case,	there	is	one-hot	encoding.	In	the	other	case,
the	binary,	multilabel	outputs	are	independent.	In	that	case,	we	can	choose	a	threshold	(between	0	and	1)
at	which	point	to	decide	whether	the	class	is	1	or	0.	In	the	most	basic	sense,	we	can	choose	the	threshold
to	be	0.5,	where	all	probabilities	below	0.5	are	classified	as	0,	and	probabilities	greater	than	or	equal	to
0.5	are	classified	as	1.	Examples	of	this	class’s	use	are	in	“Supervised	Learning”.

public	class	ClassifierAccuracy	{

				

				RealMatrix	predictions;

				RealMatrix	targets;

				ProbabilityEncoder	probabilityEncoder;

				RealVector	classCount;

				public	ClassifierAccuracy(RealMatrix	predictions,	RealMatrix	targets)	{

								this.predictions	=	predictions;

								this.targets	=	targets;

								probabilityEncoder	=	new	ProbabilityEncoder();

								//tally	the	binary	class	occurrences	per	dimension

								classCount	=	new	ArrayRealVector(targets.getColumnDimension());

								for	(int	i	=	0;	i	<	targets.getRowDimension();	i++)	{

												classCount	=	classCount.add(targets.getRowVector(i));

								}

				}

				

				public	RealVector	getAccuracyPerDimension()	{

								RealVector	accuracy	=	

												new	ArrayRealVector(predictions.getColumnDimension());

								for	(int	i	=	0;	i	<	predictions.getRowDimension();	i++)	{

												RealVector	binarized	=	probabilityEncoder.getOneHot(

																predictions.getRowVector(i));

												//	0*0,	0*1,	1*0	=	0	and	ONLY	1*1	=	1	gives	true	positives

												RealVector	decision	=	binarized.ebeMultiply(targets.getRowVector(i));

												//	append	TP	counts	to	accuracy

												accuracy	=	accuracy.add(decision);

								}

								return	accuracy.ebeDivide(classCount);

				}

				

				public	double	getAccuracy()	{

								//	convert	accuracy_per_dim	back	to	counts

								//	then	sum	and	divide	by	total	rows

								return	getAccuracyPerDimension().ebeMultiply(classCount).getL1Norm()	/	

								targets.getRowDimension();

				}

				

				//	implements	Jaccard	similarity	scores

				public	RealVector	getAccuracyPerDimension(double	threshold)	{	

				//	assumes	un-correlated	multi-output

								RealVector	accuracy	=	new	ArrayRealVector(targets.getColumnDimension());

								for	(int	i	=	0;	i	<	predictions.getRowDimension();	i++)	{

												//binarize	the	row	vector	according	to	the	threshold

												RealVector	binarized	=	probabilityEncoder.getBinary(

												predictions.getRowVector(i),	threshold);

												//	0-0	(TN)	and	1-1	(TP)	=	0	while	1-0	=	1	and	0-1	=	-1

												RealVector	decision	=	binarized.subtract(

												targets.getRowVector(i)).map(new	Abs()).mapMultiply(-1).mapAdd(1);

												//	append	either	TP	and	TN	counts	to	accuracy

												accuracy	=	accuracy.add(decision);

								}

								return	accuracy.mapDivide((double)	predictions.getRowDimension());	

								//	accuracy	for	each	dimension,	given	the	threshold

				}

				



				public	double	getAccuracy(double	threshold)	{

								//	mean	of	the	accuracy	vector

								return	getAccuracyPerDimension(threshold).getL1Norm()	/

												targets.getColumnDimension();

				}	

}



Unsupervised	Learning
When	we	have	only	independent	variables,	we	must	discern	patterns	in	the	data	without	the	aid	of
dependent	variables	(responses)	or	labels.	The	most	common	of	the	unsupervised	techniques	is	clustering.
The	goal	of	all	clustering	is	to	classify	each	data	point	X	into	a	series	of	K	sets,	 ,	where
the	number	of	sets	is	less	than	the	number	of	points.	Typically,	each	point	 	will	belong	to	only	one
subset	 .	However,	we	can	also	designate	each	point	 	to	belong	to	all	sets	with	a	probability

	such	that	the	sum	=	1.	Here	we	explore	two	varieties	of	hard	assignment,	k-
means	and	DBSCAN	clustering;	and	a	soft	assignment	type,	mixture	of	Gaussians.	They	all	vary	widely
in	their	assumptions,	algorithms,	and	scope.	However,	the	result	is	generally	the	same:	to	classify	a	point
X	into	one	or	more	subsets,	or	clusters.



k-Means	Clustering
k-means	is	the	simplest	form	of	clustering	and	uses	hard	assignment	to	find	the	cluster	centers	for	a
predetermined	number	of	clusters.	Initially,	an	integer	number	of	K	clusters	is	chosen	to	start	with,	and	the
centroid	location	 	of	each	is	chosen	by	an	algorithm	(or	at	random).	A	point	x	will	belong	to	a	cluster
of	set	 	if	its	Euclidean	distance	(can	be	others,	but	usually	L2)	is	closest	to	 .	Then	the	objective
function	to	minimize	is	as	follows:

Then	we	update	the	new	centroid	(the	mean	position	of	all	x	in	a	cluster)	via	this	equation:

We	can	stop	when	L	does	not	change	anymore,	and	therefore	the	centroids	are	not	changing.	How	do	we
know	what	number	of	clusters	is	optimal?	We	can	keep	track	of	the	sum	of	all	cluster	variances	and	vary
the	number	of	clusters.	When	plotting	the	sum-of-variances	versus	the	number	of	clusters,	ideally	the
shape	will	look	like	a	hockey	stick,	with	a	sharp	bend	in	the	plot	indicating	the	ideal	number	of	clusters	at
the	point.

The	algorithm	used	by	Apache	Commons	Math	is	the	k-means++,	which	does	a	better	job	of	picking	out
random	starting	points.	The	class	KMeansPlusPlusClusterer<T>	takes	several	arguments	in	its
constructor,	but	only	one	is	required:	the	number	of	clusters	to	search	for.	The	data	to	be	clustered	must	be
a	List	of	Clusterable	points.	The	class	DoublePoint	is	a	convenient	wrapper	around	an	array	of
doubles	that	implements	Clusterable.	It	takes	an	array	of	doubles	in	its	constructor.

double[][]	rawData	=	...



List<DoublePoint>	data	=	new	ArrayList<>();

for	(double[]	row	:	rawData)	{

				data.add(new	DoublePoint(row));

}

/*	num	clusters	to	search	for	*/

int	numClusters	=	1;

/*	the	basic	constructor	*/

KMeansPlusPlusClusterer<DoublePoint>	kmpp	=	

				new	KMeansPlusPlusClusterer<>(numClusters);

/*	this	performs	the	clustering	and	returns	a	list	with	length	numClusters	*/

List<CentroidCluster<DoublePoint>>	results	=	kmpp.cluster(data);

/*	iterate	the	list	of	Clusterables	*/

for	(CentroidCluster<DoublePoint>	result	:	results)	{

				DoublePoint	centroid	=	(DoublePoint)	result.getCenter();

				System.out.println(centroid);	//	DoublePoint	has	toString()	method

			

				/*	we	also	have	access	to	all	the	points	in	only	this	cluster	*/

				List<DoublePoint>	clusterPoints	=	result.getPoints();

}

In	the	k-means	scheme,	we	want	to	iterate	over	several	choices	of	numClusters,	keeping	track	of	the	sum
of	variances	for	each	cluster.	Because	variances	add,	this	gives	us	a	measure	of	total	error.	Ideally,	we
want	to	minimize	this	number.	Here	we	keep	track	of	the	cluster	variances	as	we	iterate	through	various
cluster	searches:

/*	search	for	1	through	5	clusters	*/

for	(int	i	=	1;	i	<	5;	i++)	{

												

				KMeansPlusPlusClusterer<DoublePoint>	kmpp	=	new	KMeansPlusPlusClusterer<>(i);

				List<CentroidCluster<DoublePoint>>	results	=	kmpp.cluster(data);

				/*	this	is	the	sum	of	variances	for	this	number	of	clusters	*/

				SumOfClusterVariances<DoublePoint>	clusterVar	=	

				new	SumOfClusterVariances<>(new	EuclideanDistance());

								

				for	(CentroidCluster<DoublePoint>	result	:	results)	{

								DoublePoint	centroid	=	(DoublePoint)	result.getCenter());									

				}

}

One	way	we	can	improve	the	k-means	is	to	try	several	starting	points	and	take	the	best	result	—	that	is,
lowest	error.	Because	the	starting	points	are	random,	at	times	the	clustering	algorithm	takes	a	wrong	turn,
which	even	our	strategies	for	handling	empty	clusters	can’t	handle.	It’s	a	good	idea	to	repeat	each
clustering	attempt	and	choose	the	one	with	the	best	results.	The	class
MultiKMeansPlusPlusClusterer<T>	performs	the	same	clustering	operation	numTrials	times	and	uses
only	the	best	result.	We	can	combine	these	with	the	previous	code:

/*	repeat	each	clustering	trial	10	times	and	take	the	best	*/

int	numTrials	=	10;

/*	search	for	1	through	5	clusters	*/

for	(int	i	=	1;	i	<	5;	i++)	{

												

				/*	we	still	need	to	create	a	cluster	instance	...	*/

				KMeansPlusPlusClusterer<DoublePoint>	kmpp	=	new	KMeansPlusPlusClusterer<>(i);

				/*	...	and	pass	it	to	the	constructor	of	the	multi	*/



				MultiKMeansPlusPlusClusterer<DoublePoint>	multiKMPP	=	

								new	MultiKMeansPlusPlusClusterer<>(kmpp,	numTrials);

				/*	NOTE	this	clusters	on	multiKMPP	NOT	kmpp	*/

				List<CentroidCluster<DoublePoint>>	results	=	multikKMPP.cluster(data);

				/*	this	is	the	sum	of	variances	for	this	number	of	clusters	*/

				SumOfClusterVariances<DoublePoint>	clusterVar	=	

								new	SumOfClusterVariances<>(new	EuclideanDistance());

				/*	the	sumOfVariance	score	for	'i'	clusters	*/

				double	score	=	clusterVar.score(results)

								

				/*	the	'best'	centroids	*/

				for	(CentroidCluster<DoublePoint>	result	:	results)	{

								DoublePoint	centroid	=	(DoublePoint)	result.getCenter());									

				}

}



DBSCAN
What	if	clusters	have	irregular	shapes?	What	if	clusters	are	intertwined?	The	DBSCAN	(density-based
spatial	clustering	of	applications	with	noise)	algorithm	is	ideal	for	finding	hard-to-classify	clusters.	It
does	not	assume	the	number	of	clusters,	but	rather	optimizes	itself	to	the	number	of	clusters	present.	The
only	input	parameters	are	the	maximum	radius	of	capture	and	the	minimum	number	of	points	per	cluster.	It
is	implemented	as	follows:

/*	constructor	takes	eps	and	minpoints	*/

double	eps	=	2.0;

int	minPts	=	3;

DBSCANClusterer	clusterer	=	new	DBSCANClusterer(eps,	minPts);

List<Cluster<DoublePoint>>	results	=	clusterer.cluster(data);

Note	that	unlike	the	previous	k-means++,	DBSCAN	does	not	return	a	CentroidCluster	type	because	the
centroids	of	the	irregularly	shaped	clusters	may	not	be	meaningful.	Instead,	you	can	access	the	clustered
points	directly	and	use	them	for	further	processing.	But	also	note	that	if	the	algorithm	cannot	find	any
clusters,	the	List<Cluster<T>>	instance	will	comprise	an	empty	List	with	a	size	of	0:

if(results.isEmpty())	{

				System.out.println("No	clusters	were	found");

}	else	{

								

				for	(Cluster<DoublePoint>	result	:	results)	{

								/*	each	clusters	points	are	in	here	*/

								List<DoublePoint>	points	=	result.getPoints();

								System.out.println(points.size());

								//	TODO	do	something	with	the	points	in	each	cluster

				}

}

In	this	example,	we	have	created	four	random	multivariate	(two-dimensional)	normal	clusters.	Of	note	is
that	two	of	the	clusters	are	close	enough	to	be	touching	and	could	even	be	considered	one	angular-shaped
cluster.	This	demonstrates	a	trade-off	in	the	DBSCAN	algorithm.

In	this	case,	we	need	to	set	the	radius	of	capture	small	enough	( 	=	0.225)	to	allow	detection	of	the
separate	clusters,	but	there	are	outliers.	A	larger	radius	( 	=	0.8)	here	would	combine	the	two	leftmost
clusters	into	one,	but	there	would	be	almost	no	outliers.	As	we	decrease	 ,	we	are	enabling	a	finer
resolution	for	cluster	detection,	but	we	also	are	increasing	the	likelihood	of	outliers.	This	may	become
less	of	an	issue	in	higher-dimensional	space	in	which	clusters	in	close	proximity	to	each	other	are	less
likely.	An	example	of	four	Gaussian	clusters	that	fit	the	DBSCAN	algorithm	is	shown	in	Figure	5-1.



Figure	5-1.	DBSCAN	on	simulation	of	four	Gaussian	clusters

Dealing	with	outliers
The	DBSCAN	algorithm	is	well	suited	for	dealing	with	outliers.	How	do	we	access	them?	Unfortunately,
the	current	Math	implementation	does	not	allow	access	to	the	points	labeled	as	noise	in	the	DBSCAN
algorithm.	But	we	can	try	to	keep	track	of	that	like	this:

/*	we	are	going	to	keep	track	of	outliers	*/

//	NOTE	need	a	completely	new	list,	not	to	reference	same	object

//	e.g.,	outliers	=	data	is	not	a	good	idea

//	List<DoublePoint>	outliers	=	data;	//	will	remove	points	from	data	as	well

List<DoublePoint>	outliers	=	new	ArrayList<>();

for	(DoublePoint	dp	:	data)	{

				outliers.add(new	DoublePoint(dp.getPoint()));

}

Then	when	we	are	iterating	through	the	results	clusters,	we	can	remove	each	cluster	from	the	complete
dataset	data,	which	will	become	the	outliers	after	we	remove	everything	else:

for	(Cluster<DoublePoint>	result	:	results)	{



				/*	each	clusters	points	are	in	here	*/

				List<DoublePoint>	points	=	result.getPoints();

				

																

				/*	remove	these	cluster	points	from	the	data	copy	"outliers"

							which	will	contain	ONLY	the	outliers	after	all	of	the

							cluster	points	are	removed

					*/

																

				outliers.removeAll(points);

}

//	now	the	LIST	outliers	only	contains	points	NOT	in	any	cluster

Optimizing	radius	of	capture	and	minPoints
The	radius	of	capture	is	easy	to	see	in	2D,	but	how	do	you	know	what	is	optimal?	Clearly,	this	is	entirely
subjective	and	will	depend	on	your	use	case.	In	general,	the	number	of	minimum	points	should	follow	this
relation:

So	in	a	2D	case,	we	at	least	want	three	minimum	points	per	cluster.	The	radius	of	capture,	 ,	can	be
estimated	at	the	bend	in	hockey	stick	of	the	k-distance	graph.	Both	the	number	of	minimum	points	and	the
radius	of	capture	can	be	grid-searched	against	the	silhouette	score	as	a	metric.	First,	find	the	silhouette
coefficient,	s,	for	each	sample;	a	=	the	mean	distance	between	that	sample	and	all	other	points	in	the
class,	and	b	=	the	mean	distance	between	that	sample	and	all	the	points	in	the	next	nearest	cluster:

Then	the	silhouette	score	is	the	mean	of	all	the	sample	silhouette	coefficients.	The	silhouette	score	is
between	–1	and	1:	–1	is	incorrect	clustering,	1	is	highly	dense	clustering,	and	0	indicates	overlapping
clusters.	s	increases	as	clusters	are	dense	and	well	separated.	As	in	the	case	for	k-means	previously,	we
can	vary	the	 	value	and	output	the	silhouette	score:

double[]	epsVals	=	{0.15,	0.16,	0.17,	0.18,	0.19,	0.20,

																				0.21,	0.22,	0.23,	0.24,	0.25};

								

for	(double	epsVal	:	epsVals)	{

																			

				DBSCANClusterer	clusterer	=	new	DBSCANClusterer(epsVal,	minPts);

				List<Cluster<DoublePoint>>	results	=	clusterer.cluster(dbExam.clusterPoints);

												

				if(results.isEmpty())	{

																

								System.out.println("No	clusters	where	found");

					}	else	{

								SilhouetteCoefficient	s	=	new	SilhouetteCoefficient(results);

								System.out.println("eps	=	"	+	epsVal	+

																											"	numClusters	=	"	+	results.size()	+	

																											"	s	=	"	+	s.getCoefficient());

					}

}



This	gives	the	following	output:

eps	=	0.15	numClusters	=	7	s	=	0.54765

eps	=	0.16	numClusters	=	7	s	=	0.53424

eps	=	0.17	numClusters	=	7	s	=	0.53311

eps	=	0.18	numClusters	=	6	s	=	0.68734

eps	=	0.19	numClusters	=	6	s	=	0.68342

eps	=	0.20	numClusters	=	6	s	=	0.67743

eps	=	0.21	numClusters	=	5	s	=	0.68348

eps	=	0.22	numClusters	=	4	s	=	0.70073	//	best	one!

eps	=	0.23	numClusters	=	3	s	=	0.68861

eps	=	0.24	numClusters	=	3	s	=	0.68766

eps	=	0.25	numClusters	=	3	s	=	0.68571

We	see	a	bump	in	the	silhouette	score	at	 	=	0.22,	where	s	=	0.7,	indicating	that	the	ideal	 	is
approximately	0.22.	At	this	particular	 ,	the	DBSCAN	routine	also	converged	on	four	clusters,	which	is
the	number	we	simulated.	In	practical	situations,	of	course,	we	won’t	know	the	number	of	clusters
beforehand.	But	this	example	does	indicate	that	s	should	approach	a	maximal	value	of	1	if	we	have	the
right	number	of	clusters	and	therefore	the	right	 .

Inference	from	DBSCAN
DBSCAN	is	not	for	predicting	membership	of	new	points	as	in	the	k-means	algorithm.	It	is	for	segmenting
the	data	for	further	use.	If	you	want	a	predictive	model	based	on	DBSCAN,	you	can	assign	class	values	to
the	clustered	data	points	and	try	a	classification	scheme	such	as	Gaussian,	naive	Bayes,	or	others.



Gaussian	Mixtures
A	similar	concept	to	DBSCAN	is	to	cluster	based	on	the	density	of	points,	but	use	the	multivariate	normal
distribution	N(μ,	Σ)	because	it	comprises	a	mean	and	covariance.	Data	points	located	near	the	mean	have
the	highest	probability	of	belonging	to	that	cluster,	whereas	the	probability	drops	off	to	almost	nothing	as
the	data	point	is	located	very	far	from	the	mean.

Gaussian	mixture	model
A	Gaussian	mixture	model	is	expressed	mathematically	as	a	weighted	mixture	of	k	multivariate	Gaussian
distributions	(as	discussed	in	Chapter	3).

Here	the	weights	satisfy	the	relation	 .	We	must	create	a	List	of	Pair	objects,	where	the	first
member	of	Pair	is	the	weight,	and	the	second	member	is	the	distribution	itself:

List<Pair<Double,	MultivariateNormalDistribution>>	mixture	=	new	ArrayList<>();

/*	mixture	component	1	*/

double	alphaOne	=	0.70;

double[]	meansOne	=	{0.0,	0.0};

double[][]	covOne	=	{{1.0,	0.0},{0.0,	1.0}};

MultivariateNormalDistribution	distOne	=	

				new	MultivariateNormalDistribution(meansOne,	covOne);

Pair	pairOne	=	new	Pair(alphaOne,	distOne);

mixture.add(pairOne);

/*	mixture	component	2	*/

double	alphaTwo	=	0.30;

double[]	meansTwo	=	{5.0,	5.0};

double[][]	covTwo	=	{{1.0,	0.0},{0.0,	1.0}};

MultivariateNormalDistribution	distTwo	=	

				new	MultivariateNormalDistribution(meansTwo,	covTwo);

Pair	pairTwo	=	new	Pair(alphaTwo,	distTwo);

mixture.add(pairTwo);

/*	add	the	list	of	pairs	to	the	mixture	model	and	sample	the	points	*/

MixtureMultivariateNormalDistribution	dist	=	

				new	MixtureMultivariateNormalDistribution(mixture);

/*	we	don't	need	a	seed,	but	it	helps	if	we	want	to	recall	the	same	data	*/

dist.reseedRandomGenerator(0L);

/*	generate	1000	random	data	points	from	the	mixture	*/

double[][]	data	=	dist.sample(1000);

Note	that	the	data	sampled	from	the	distribution	mixture	model	does	not	keep	track	of	what	component	the
sampled	data	point	comes	from.	In	other	words,	you	will	not	be	able	to	tell	what	MultivariateNormal
each	sampled	data	point	belongs	to.	If	you	require	this	feature,	you	can	always	sample	from	the	individual
distributions	and	then	add	them	together	later.

For	purposes	of	testing,	creating	mixture	models	can	be	tedious	and	is	fraught	with	problems.	If	you	are



not	building	a	dataset	from	existing,	real	data,	it	is	best	to	try	simulating	data	with	some	known	problems
averted.	A	method	for	generating	random	mixture-model,	is	presented	in	Appendix	A.	In	Figure	5-2,	a	plot
of	a	multivariate	Gaussian	mixture	model	is	demonstrated.	There	are	two	clusters	in	two	dimensions.

Figure	5-2.	Gaussian	clusters	in	2D

The	data	can	be	generated	with	the	example	code:

int	dimension	=	5;

int	numClusters	=	7;

double	boxSize	=	10;

long	seed	=	0L;

int	numPoints	=	10000;

/*	see	Appendix	for	this	dataset	*/

MultiNormalMixtureDataset	mnd	=	new	MultiNormalMixtureDataset(dimension);

mnd.createRandomMixtureModel(numClusters,	boxSize,	0L);

double[][]	data	=	mnd.getSimulatedData(numPoints);

Fitting	with	the	EM	algorithm
The	expectation	maximization	algorithm	is	useful	in	many	other	places.	Essentially,	what	is	the	maximum
likelihood	that	the	parameters	we’ve	chosen	are	correct?	We	iterate	until	they	don’t	change	anymore,
given	a	certain	tolerance.	We	need	to	provide	a	starting	guess	of	what	the	mixture	is.	Using	the	method	in



the	preceding	section,	we	can	create	a	mixture	with	known	components.	However,	the	static	method
MultivariateNormalMixtureExpectationMaximization.estimate(data,	numClusters)	is	used
to	estimate	the	starting	point	given	the	dataset	and	number	of	clusters	as	input:

MultivariateNormalMixtureExpectationMaximization	mixEM	=	

				new	MultivariateNormalMixtureExpectationMaximization(data);

/*	need	a	guess	as	where	to	start	*/

MixtureMultivariateNormalDistribution	initialMixture	=	

				MultivariateNormalMixtureExpectationMaximization.estimate(data,	numClusters);

/*	perform	the	fit	*/

mixEM.fit(initialMixture);

/*	this	is	the	fitted	model	*/

MixtureMultivariateNormalDistribution	fittedModel	=	mixEM.getFittedModel();

for	(Pair<Double,	MultivariateNormalDistribution>	pair	:

				fittedModel.getComponents())	{

				System.out.println("************	cluster	*****************");

				System.out.println("alpha:	"	+	pair.getFirst());

				System.out.println("means:	"	+	new	ArrayRealVector(

								pair.getSecond().getMeans()));

				System.out.println("covar:	"	+	pair.getSecond().getCovariances());

}

Optimizing	the	number	of	clusters
Just	as	in	k-means	clustering,	we	would	like	to	know	the	optimal	number	of	clusters	needed	to	describe
our	data.	In	this	case,	though,	each	data	point	belongs	to	all	clusters	with	finite	probability	(soft
assignment).	How	do	we	know	when	the	number	of	clusters	is	good	enough?	We	start	with	a	low	number
(e.g.,	2)	and	work	our	way	up,	calculating	the	log-likelihood	for	each	trial.	To	make	things	easier,	we	can
plot	the	loss	(the	negative	of	the	log-likelihood),	and	watch	as	it	hopefully	drops	toward	zero.
Realistically,	it	never	will,	but	the	idea	is	to	stop	when	the	loss	becomes	somewhat	constant.	Usually,	the
best	number	of	clusters	will	be	at	the	elbow	of	the	hockey	stick.

Here	is	the	code:

MultivariateNormalMixtureExpectationMaximization	mixEM	=	

				new	MultivariateNormalMixtureExpectationMaximization(data);

int	minNumClusters	=	2;

int	maxNumClusters	=	10;

for(int	i	=	minNumCluster;	i	<=	maxNumClusters;	i++)	{

				/*	need	a	guess	as	where	to	start	*/

				MixtureMultivariateNormalDistribution	initialMixture	=	

								MultivariateNormalMixtureExpectationMaximization.estimate(data,	i);

				/*	perform	the	fit	*/

				mixEM.fit(initialMixture);

				/*	this	is	the	fitted	model	*/

				MixtureMultivariateNormalDistribution	fittedModel	=	mixEM.getFittedModel();

				/*	print	out	the	log-likelihood	*/

				System.out.println(i	+	"	ll:	"	+	mixEM.getLogLikelihood());

}

This	outputs	the	following:

2	ll:	-6.370643787350135

3	ll:	-5.907864928786343



4	ll:	-5.5789246749261014

5	ll:	-5.366040927493185

6	ll:	-5.093391683217386

7	ll:	-5.1934910558216165

8	ll:	-4.984837507547836

9	ll:	-4.9817765145490664

10	ll:	-4.981307556011888

When	plotted,	this	shows	a	characteristic	hockey-stick	shape	with	the	inflection	point	at	numClusters	=
7,	the	number	of	clusters	we	simulated.	Note	that	we	could	have	stored	the	loglikelihoods	in	an	array,	and
fit	the	results	in	a	List	for	later	retrieval	programatically.	In	Figure	5-3,	the	log-likelihood	loss	is	plotted
versus	the	number	of	clusters.	Note	the	sharp	decline	in	loss	and	the	bend	around	seven	clusters,	the
original	number	of	clusters	in	the	simulated	dataset.

Figure	5-3.	Log	loss	of	7,	5	dimensional	clusters



Supervised	Learning
Given	numeric	variates	X	and	potentially	non-numeric	responses	Y,	how	can	we	formulate	mathematical
models	to	learn	and	predict?	Recall	that	linear	regression	models	rely	on	both	X	and	Y	to	be	continuous
variables	(e.g.,	real	numbers).	Even	when	Y	contains	0s	or	1s,	(and	any	other	integers),	a	linear
regression	would	most	likely	fail.

Here	we	examine	methods	specifically	designed	for	the	common	use	cases	that	collect	numeric	data	as
variates	and	their	associated	labels.	Most	classification	schemes	lend	themselves	easily	to	a
multidimensional	variate	X	and	a	single	dimension	of	classes	Y.	However,	several	techniques,	including
neural	networks,	can	handle	multiple	output	classes	Y	in	a	way	analogous	to	the	multiresponse	models	of
linear	regression.



Naive	Bayes
Naive	Bayes	is	perhaps	the	most	elementary	of	classification	schemes	and	is	a	logical	next	step	after
clustering.	Recall	that	in	clustering,	our	goal	is	to	separate	or	classify	data	into	distinct	groups.	We	can
then	look	at	each	group	individually	and	try	to	learn	something	about	that	group,	such	as	its	center
position,	its	variance,	or	any	other	statistical	measure.

In	a	naive	Bayes	classification	scheme,	we	split	the	data	into	groups	(classes)	for	each	label	type.	We
then	learn	something	about	the	variates	in	each	group.	This	will	depend	on	the	type	of	variable.	For
example,	if	the	variables	are	real	numbers,	we	can	assume	that	each	dimension	(variate)	of	the	data	is	a
sample	from	a	normal	distribution.

For	integer	data	(counts),	we	can	assume	a	multinomial	distribution.	If	the	data	is	binary	(0	or	1),	we	can
assume	a	Bernoulli	distributed	dataset.	In	this	way,	we	can	estimate	statistical	quantities	such	as	mean	and
variance	for	each	of	the	datasets	belonging	to	only	the	class	it	was	labeled	for.	Note	that	unlike	more
sophisticated	classification	schemes,	we	never	use	the	labels	themselves	in	any	computation	or	error
propagation.	They	serve	the	purpose	only	of	splitting	our	data	into	groups.

According	to	Bayes’	theorem	(posterior	=	prior	×	likelihood	/	evidence),	the	joint	probability	is	the	prior
×	likelihood.	In	our	case,	the	evidence	is	the	sum	of	joint	probabilities	over	all	classes.	For	a	set	of	K
classes,	where	k	=	{1,	2	…	K},	the	probability	of	a	particular	class	 	given	an	input	vector	x	is
determined	as	follows:

Here,	the	naive	independence	assumption	allows	us	to	express	the	likelihood	as	the	product	of
probabilities	for	each	dimension	of	the	n-dimensional	variate	x:

This	is	expressed	more	compactly	as	follows:

The	normalization	is	the	sum	over	all	terms	in	the	numerator	expressed:



The	probability	of	any	class	is	the	number	of	times	it	occurs	divided	by	the	total:	 .	Here
we	take	the	product	for	each	class	k	over	each	feature	 .	The	form	of	 ,	is	probability	density
function	we	choose	based	on	our	assumptions	of	the	data.	In	the	following	sections,	we	explore	normal,
multinomial,	and	Bernoulli	distributions.

WARNING

Note	that	if	any	one	calculation	 ,	the	entire	expression	will	be	 .	For	some	conditional
probability	models	such	as	Gaussian	or	Bernoulli	distributions,	this	will	never	be	the	case.	But	for	a	multinomial	distribution,	this
can	occur,	so	we	include	a	small	factor	 	to	avoid	this.

After	we	calculate	posterior	probabilities	for	each	class,	a	Bayes	classifier	is	then	a	decision	rule	on	the
posterior	probabilities,	where	we	take	the	maximum	position	as	the	most	likely	class:

We	can	use	the	same	class	for	all	types,	because	training	the	model	relies	on	the	types	of	quantities	that
are	easily	accumulated	with	MultivariateSummaryStatistics	per	class.	We	can	then	use	a	strategy
pattern	to	implement	whichever	type	of	conditional	probability	we	require	and	pass	it	directly	into	the
constructor:

public	class	NaiveBayes	{

				Map	<Integer,	MultivariateSummaryStatistics>	statistics;

				ConditionalProbabilityEstimator	conditionalProbabilityEstimator;

				int	numberOfPoints;	//	total	number	of	points	the	model	was	trained	on

				public	NaiveBayes(

								ConditionalProbabilityEstimator	conditionalProbabilityEstimator)	{

								statistics	=	new	HashMap<>();

								this.conditionalProbabilityEstimator	=	conditionalProbabilityEstimator;

								numberOfPoints	=	0;

				}

				

				public	void	learn(RealMatrix	input,	RealMatrix	target)	{

								//	if	numTargetCols	==	1	then	multiclass	e.g.	0,	1,	2,	3

								//	else	one-hot	e.g.	1000,	0100,	0010,	0001

								numberOfPoints	+=	input.getRowDimension();

								for	(int	i	=	0;	i	<	input.getRowDimension();	i++)	{

												double[]	rowData	=	input.getRow(i);



												int	label;

												if	(target.getColumnDimension()==1)	{

																label	=	new	Double(target.getEntry(i,	0)).intValue();

												}	else	{

																label	=	target.getRowVector(i).getMaxIndex();

												}

												if(!statistics.containsKey(label))	{

																statistics.put(label,	new	MultivariateSummaryStatistics(

																rowData.length,	true));

												}

												statistics.get(label).addValue(rowData);

								}

				}

				

				public	RealMatrix	predict(RealMatrix	input)	{

								

								int	numRows	=	input.getRowDimension();

								int	numCols	=	statistics.size();

								RealMatrix	predictions	=	new	Array2DRowRealMatrix(numRows,	numCols);

								

								for	(int	i	=	0;	i	<	numRows;	i++)	{				

												double[]	rowData	=	input.getRow(i);

												double[]	probs	=	new	double[numCols];

												double	sumProbs	=	0;

												for	(Map.Entry<Integer,	MultivariateSummaryStatistics>	entrySet	:	

												statistics.entrySet())	{

																

																Integer	classNumber	=	entrySet.getKey();

																MultivariateSummaryStatistics	mss	=	entrySet.getValue();

																/*	prior	prob	n_k	/	N	ie	num	points	in	class	/	total	points	*/

																double	prob	=	new	Long(mss.getN()).doubleValue()/numberOfPoints;

																

																/*	depends	on	type	...	Gaussian,	Multinomial,	or	Bernoulli	*/

																prob	*=	conditionalProbabilityEstimator.getProbability(mss,

																																																																							rowData);

																

																probs[classNumber]	=	prob;

																sumProbs	+=	prob;

												}

												/*	L1	norm	the	probs	*/

												for	(int	j	=	0;	j	<	numCols;	j++)	{

																probs[j]	/=	sumProbs;

												}

												predictions.setRow(i,	probs);

								}

								return	predictions;

				}

}

All	that	is	needed	then	is	an	interface	that	designates	the	form	of	the	conditional	probability:

public	interface	ConditionalProbabilityEstimator	{

				public	double	getProbability(MultivariateSummaryStatistics	mss,

																																	double[]	features);

}

In	the	following	three	subsections,	we	explore	three	kinds	of	naive	Bayes	classifiers,	each	of	which
implements	the	ConditionalProbabilityEstimator	interface	for	use	in	the	NaiveBayes	class.

Gaussian
If	the	features	are	continuous	variables,	we	can	use	the	Gaussian	naive	Bayes	classifier:



We	can	then	implement	a	class	like	this:

import	org.apache.commons.math3.distribution.NormalDistribution;

import	org.apache.commons.math3.stat.descriptive.MultivariateSummaryStatistics;

public	class	GaussianConditionalProbabilityEstimator	

implements	ConditionalProbabilityEstimator{

				@Override

				public	double	getProbability(MultivariateSummaryStatistics	mss,

																																	double[]	features)	{

								double[]	means	=	mss.getMean();

								double[]	stds	=	mss.getStandardDeviation();

								double	prob	=	1.0;

								for	(int	i	=	0;	i	<	features.length;	i++)	{

												prob	*=	new	NormalDistribution(means[i],	stds[i])

																.density(features[i]);

								}	

								return	prob;

				}

				

}

And	test	it	like	this:

double[][]	features	=	{{6,	180,	12},{5.92,	190,	11},	{5.58,	170,	12},	

																							{5.92,	165,	10},	{5,	100,	6},	{5.5,	150,	8},

																							{5.42,	130,	7},	{5.75,	150,	9}};

String[]	labels	=	{"male",	"male",	"male",	"male",

																			"female",	"female",	"female",	"female"};

NaiveBayes	nb	=	new	NaiveBayes(new	GaussianConditionalProbabilityEstimator());

nb.train(features,	labels);

								

double[]	test	=	{6,	130,	8};

String	inference	=	nb.inference(test);	//	"female"

This	will	yield	the	correct	result,	female.

Multinomial
Features	are	integer	values	—	for	example,	counts.	However,	continuous	features	such	as	TFIDF	also	can
work.	The	likelihood	of	observing	any	feature	vector	x	for	class	 	is	as	follows:



We	note	that	the	front	part	of	the	term	depends	only	on	the	input	vector	x,	and	therefore	is	equivalent	for
each	calculation	of	p(x|k).	Fortunately,	this	computationally	intense	term	will	drop	out	in	the	final,
normalized	expression	for	p(k|x),	allowing	us	to	use	the	much	simpler	formulation:

We	can	easily	calculate	the	required	probability	 	where	 	is	the	sum	of	values	for	each
feature,	given	class	k,	and	 	is	the	total	count	for	all	features,	given	class	k.	When	estimating	the
conditional	probabilities,	any	zeros	will	cancel	out	the	entire	calculation.	It	is	therefore	useful	to	estimate
the	probabilities	with	a	small	additive	factor	 	—	known	as	Lidstone	smoothing	for	generalized	 ,	and
Laplace	smoothing	when	 .	As	a	result	of	this	L1	normalization	of	the	numerator,	the	factor	 	is
just	the	dimension	of	the	feature	vector.

The	final	expression	is	as	follows:



For	large	 	(large	counts	of	words,	for	example),	the	problem	may	become	numerically	intractable.	We

can	solve	the	problem	in	log	space	and	convert	it	back	by	using	the	relation	 .
The	preceding	expression	can	be	written	as	follows:

In	this	strategy	implementation,	the	smoothing	coefficient	is	designated	in	the	constructor.	Note	the	use	of
the	logarithmic	implementation	to	avoid	numerical	instability.	It	would	be	wise	to	add	an	assertion	(in	the
constructor)	that	the	smoothing	constant	alpha	hold	the	relation	 :

public	class	MultinomialConditionalProbabilityEstimator	

								implements	ConditionalProbabilityEstimator	{

				private	double	alpha;

				public	MultinomialConditionalProbabilityEstimator(double	alpha)	{

								this.alpha	=	alpha;	//	Lidstone	smoothing	0	>	alpha	>	1

				}

				public	MultinomialConditionalProbabilityEstimator()	{

								this(1);	//	Laplace	smoothing

				}

				

				@Override

				public	double	getProbability(MultivariateSummaryStatistics	mss,

																																	double[]	features)	{

								int	n	=	features.length;

								double	prob	=	0;

								double[]	sum	=	mss.getSum();	//	array	of	x_i	sums	for	this	class

								double	total	=	0.0;	//	total	count	of	all	features

								for	(int	i	=	0;	i	<	n;	i++)	{

												total	+=	sum[i];

								}

								for	(int	i	=	0;	i	<	n;	i++)	{

												prob	+=	features[i]	*	Math.log((sum[i]	+	alpha)	/(total+alpha*n));

								}

								return	Math.exp(prob);

				}

}

Bernoulli



Features	are	binary	values	—	for	example,	occupancy	status.	The	probability	per	feature	is	the	mean
value	for	that	column.	For	an	input	feature,	we	can	then	calculate	the	probability:

In	other	words,	if	the	input	feature	is	a	1,	the	probability	for	that	feature	is	the	mean	value	for	the	column.
If	the	input	feature	is	a	0,	the	probability	for	that	feature	is	1	–	mean	of	that	column.	We	implement	the
Bernoulli	conditional	probability	as	shown	here:

public	class	BernoulliConditionalProbabilityEstimator

				implements	ConditionalProbabilityEstimator	{

				@Override

				public	double	getProbability(MultivariateSummaryStatistics	mss,

																																	double[]	features)	{

								int	n	=	features.length;

								double[]	means	=	mss.getMean();	

								//	this	is	actually	the	prob	per	features	e.g.	count	/	total	

								double	prob	=	1.0;

								for	(int	i	=	0;	i	<	n;	i++)	{

												//	if	x_i	=	1,	then	p,	if	x_i	=	0	then	1-p,	but	here	x_i	is	a	double

												prob	*=	(features[i]	>	0.0)	?	means[i]	:	1-means[i];

								}

								return	prob;

				}

}

Iris	example
Try	the	Iris	dataset	by	using	a	Gaussian	conditional	probability	estimator:

Iris	iris	=	new	Iris();

MatrixResampler	mr	=	new	MatrixResampler(iris.getFeatures(),	iris.getLabels());

mr.calculateTestTrainSplit(0.4,	0L);

								

NaiveBayes	nb	=	new	NaiveBayes(new	GaussianConditionalProbabilityEstimator());

nb.learn(mr.getTrainingFeatures(),	mr.getTrainingLabels());

								

RealMatrix	predictions	=	nb.predict(mr.getTestingFeatures());

								

ClassifierAccuracy	acc	=	new	ClassifierAccuracy(predictions,

																																																mr.getTestingLabels());

System.out.println(acc.getAccuracyPerDimension());	//	{1;	1;	0.9642857143}

System.out.println(acc.getAccuracy());	//	0.9833333333333333



Linear	Models
If	we	rotate,	translate,	and	scale	a	dataset	X,	can	we	relate	it	to	the	output	Y	by	mapping	a	function?	In
general,	these	all	seek	to	solve	the	problem	in	which	an	input	matrix	X	is	the	data,	and	W	and	b	are	the
free	parameters	we	want	to	optimize	for.	Using	the	notation	developed	in	Chapter	2,	for	a	weighted	input
matrix	and	intercept	Z	=	XW	+	hbT,	we	apply	a	function	 (Z)	to	each	element	of	Z	to	compute	a
prediction	matrix	 	such	that

We	can	view	a	linear	model	as	a	box	with	input	X	and	predicted	output	 .	When	optimizing	the	free
parameters	W	and	b,	the	error	on	the	output	can	be	sent	back	through	the	box,	providing	incremental
updates	dependent	on	the	algorithm	chosen.	Of	note	is	that	we	can	even	pass	the	error	back	to	the	input,
calculating	the	error	on	the	input.	For	linear	models,	this	is	not	necessary,	but	as	we	will	see	in	“Deep
Networks”,	this	is	essential	for	the	back-propagation	algorithm.	A	generalized	linear	model	is	shown	in
Figure	5-4.

Figure	5-4.	Linear	model

We	can	then	implement	a	LinearModel	class	that	is	responsible	only	for	holding	the	type	of	output
function,	the	state	of	the	free	parameters,	and	simple	methods	for	updating	the	parameters:

public	class	LinearModel	{

				

				private	RealMatrix	weight;

				private	RealVector	bias;

				private	final	OutputFunction	outputFunction;

				public	LinearModel(int	inputDimension,	int	outputDimension,

				OutputFunction	outputFunction)	{

								weight	=	MatrixOperations.getUniformRandomMatrix(inputDimension,	

								outputDimension,	0L);

								bias	=	MatrixOperations.getUniformRandomVector(outputDimension,	0L);

								this.outputFunction	=	outputFunction;

				}

				public	RealMatrix	getOutput(RealMatrix	input)	{

								return	outputFunction.getOutput(input,	weight,	bias);

				}

				public	void	addUpdateToWeight(RealMatrix	weightUpdate)	{

								weight	=	weight.add(weightUpdate);

				}

				



				public	void	addUpdateToBias(RealVector	biasUpdate)	{

								bias	=	bias.add(biasUpdate);

				}

}

The	interface	for	an	output	function	is	shown	here:

public	interface	OutputFunction	{

				RealMatrix	getOutput(RealMatrix	input,	RealMatrix	weight,	RealVector	bias);

				RealMatrix	getDelta(RealMatrix	error,	RealMatrix	output);

}

In	most	cases,	we	can	never	precisely	determine	W	and	b	such	that	the	relation	between	X	and	Y	is	exact.
The	best	we	can	do	is	to	estimate	Y,	calling	it	 ,	and	then	proceed	to	minimize	a	loss	function	of	our

choice	 .	The	goal	is	then	to	incrementally	update	the	values	of	W	and	b	over	a	set	of	iterations
(annotated	by	t)	according	to	the	following:

In	this	section,	we	will	focus	on	the	use	of	the	gradient	descent	algorithm	for	determining	the	values	of	W
and	b.	Recalling	that	the	loss	function	is	ultimately	a	function	of	both	W	and	b,	we	can	use	the	gradient
descent	optimizer	to	make	the	incremental	updates	with	the	gradient	of	the	loss:

The	objective	function	to	be	optimized	is	the	mean	loss	 ,	where	the	gradient	of	any	particular

term	with	respect	to	a	parameter	 	and	 	can	be	expressed	as	follows:

The	first	term	is	the	derivative	of	the	loss	function,	which	we	covered	in	the	prior	section.	The	second
part	of	the	term	is	the	derivative	of	the	output	function:



The	third	term	is	simply	the	derivative	of	z	with	respect	to	either	w	or	b:

As	we	will	see,	the	choice	of	the	appropriate	pair	of	loss	function	and	output	function	will	lead	to	a
mathematical	simplification	that	leads	to	the	delta	rule.	In	this	case,	the	updates	to	the	weights	and	bias
are	always	as	follows:

When	the	mean	loss	 	stops	changing	within	a	certain	numerical	tolerance	(e.g.,	10E	–	6),	the
process	can	stop,	and	we	assume	W	and	b	are	at	their	optimal	values.	However,	iterative	algorithms	are
prone	to	iterate	forever	because	of	numerical	oddities.	Therefore,	all	iterative	solvers	will	set	a	maximum
number	of	iterations	(e.g.,	1,000),	after	which	the	process	will	terminate.	It	is	good	practice	to	always
check	whether	the	maximum	number	of	iterations	was	reached,	because	the	change	in	loss	may	still	be
high,	indicating	that	the	optimal	values	of	the	free	parameters	have	not	yet	been	attained.	The	form	of	both

the	transformation	function	 (Z)	and	the	loss	function	 	will	depend	on	the	problem	at	hand.
Several	common	scenarios	are	detailed	next.

Linear
In	the	case	of	linear	regression,	 (Z)	is	set	to	the	identity	function,	and	the	output	is	equivalent	to	the
input:

This	provides	the	familiar	form	of	a	linear	regression	model:



We	solved	this	problem	in	both	Chapters	2	and	3	by	using	different	methods.	In	the	case	of	Chapter	2,	we
solved	for	the	free	parameters	by	posing	the	problem	in	matrix	notation	and	then	using	a	back-solver,
whereas	in	Chapter	3	we	took	the	least-squares	approach.	There	are,	however,	even	more	ways	to	solve
this	problem!	Ridge	regression,	lasso	regression,	and	elastic	nets	are	just	a	few	examples.	The	idea	is	to
eliminate	variables	that	are	not	useful	by	penalizing	their	parameters	during	the	optimization	process:

public	class	LinearOutputFunction	implements	OutputFunction	{

				@Override

				public	RealMatrix	getOutput(RealMatrix	input,	RealMatrix	weight,

				RealVector	bias)	{

								return	MatrixOperations.XWplusB(input,	weight,	bias);

				}

				@Override

				public	RealMatrix	getDelta(RealMatrix	errorGradient,	RealMatrix	output)	{

								//	output	gradient	is	all	1's	...	so	just	return	errorGradient

								return	errorGradient;

				}

				

}

Logistic
Solve	the	problem	where	y	is	a	0	or	1	that	can	also	be	multidimensional,	such	as	y	=	0,1,1,0,1.	The

nonlinear	function	

For	gradient	descent,	we	need	the	derivative	of	the	function:

It	is	convenient	to	note	that	the	derivative	may	also	be	expressed	in	terms	of	the	original	function.	This	is
useful,	because	it	allows	us	to	reuse	the	calculated	values	of	 	rather	than	having	to	recompute	all	the
computationally	costly	matrix	algebra:

In	the	case	of	gradient	descent,	we	can	then	implement	it	as	follows:

public	class	LogisticOutputFunction	implements	OutputFunction	{

				@Override

				public	RealMatrix	getOutput(RealMatrix	input,	RealMatrix	weight,

				RealVector	bias)	{

								return	MatrixOperations.XWplusB(input,	weight,	bias,	new	Sigmoid());

				}



				@Override

				public	RealMatrix	getDelta(RealMatrix	errorGradient,	RealMatrix	output)	{

								

								//	this	changes	output	permanently

								output.walkInOptimizedOrder(new	UnivariateFunctionMapper(

								new	LogisticGradient()));

								

								//	output	is	now	the	output	gradient

								return	MatrixOperations.ebeMultiply(errorGradient,	output);

				}

				private	class	LogisticGradient	implements	UnivariateFunction	{

								@Override

								public	double	value(double	x)	{

												return	x	*	(1	-	x);

								}			

				}			

}

When	using	the	cross-entropy	loss	function	to	calculate	the	loss	term,	note	that	 	such	that:

So	it	then	reduces	to	this:

And	considering

the	gradient	of	the	loss	with	respect	to	the	weight	is	as	follows:

We	can	include	a	learning	rate	η	to	slow	the	update	process.	The	final	formulas,	adapted	for	use	with
matrices	of	data,	are	given	as	follows:



Here,	h	is	an	m-dimensional	vector	of	1s.	Notice	the	inclusion	of	the	learning	rate	 ,	which	usually	takes
on	values	between	0.0001	and	1	and	limits	how	fast	the	parameters	converge.	For	small	values	of	 ,	we
are	more	likely	to	find	the	correct	values	of	the	weights,	but	at	the	cost	of	performing	many	more	time-
consuming	iterations.	For	larger	values	of	 ,	we	will	complete	the	algorithmic	learning	task	much
quicker.	However,	we	may	inadvertently	skip	over	the	best	solution,	giving	nonsensical	values	for	the
weights.

Softmax
Softmax	is	similar	to	logistic	regression,	but	the	target	variable	can	be	multinomial	(an	integer	between	0
and	numClasses	–	1).	We	then	transform	the	output	with	one-hot	encoding	such	that	Y	=	{0,0,1,0}.	Note
that	unlike	multi-output	logistic	regression,	only	one	position	in	each	row	can	be	set	to	1,	and	all	others
must	be	0.	Each	element	of	the	transformed	matrix	is	then	exponentiated	and	then	L1	normalized	row-
wise:

Because	the	derivative	involves	more	than	one	variable,	the	Jacobian	takes	the	place	of	the	gradient	with
terms:

Then	for	a	single	p-dimensional	output	and	prediction,	we	can	calculate	the	quantity:

This	simplifies	to	the	following:



Each	term	has	the	exact	same	update	rule	as	the	other	linear	models	under	gradient	descent:

As	a	practical	matter,	it	will	take	two	passes	over	the	input	to	compute	the	softmax	output.	First,	we	raise
each	argument	by	the	exponential	function,	keeping	track	of	the	running	sum.	Then	we	iterate	over	that	list
again,	dividing	each	term	by	the	running	sum.	If	(and	only	if)	we	use	the	softmax	cross	entropy	as	an	error,
the	update	formula	for	the	coefficients	is	identical	to	that	of	logistic	regression.	We	show	this	calculation
explicitly	in	“Deep	Networks”.

public	class	SoftmaxOutputFunction	implements	OutputFunction	{

				@Override

				public	RealMatrix	getOutput(RealMatrix	input,	RealMatrix	weight,

																																RealVector	bias)	{

								RealMatrix	output	=	MatrixOperations.XWplusB(input,	weight,	bias,

												new	Exp());

								MatrixScaler.l1(output);

								return	output;

				}

				@Override

				public	RealMatrix	getDelta(RealMatrix	error,	RealMatrix	output)	{

								

								RealMatrix	delta	=	new	BlockRealMatrix(error.getRowDimension(),

								error.getColumnDimension());

								

								for	(int	i	=	0;	i	<	output.getRowDimension();	i++)	{

												delta.setRowVector(i,	getJacobian(output.getRowVector(i)).

												preMultiply(error.getRowVector(i)));

								}

								

								return	delta;

				}

				

				private	RealMatrix	getJacobian(RealVector	output)	{

								

								int	numRows	=	output.getDimension();

								int	numCols	=	output.getDimension();

								RealMatrix	jacobian	=	new	BlockRealMatrix(numRows,	numCols);

								for	(int	i	=	0;	i	<	numRows;	i++)	{

												double	output_i	=	output.getEntry(i);

												for	(int	j	=	i;	j	<	numCols;	j++)	{

																double	output_j	=	output.getEntry(j);

																if(i==j)	{

																				jacobian.setEntry(i,	i,	output_i*(1-output_i));

																}	else	{

																				jacobian.setEntry(i,	j,	-1.0	*	output_i	*	output_j);

																				jacobian.setEntry(j,	i,	-1.0	*	output_j	*	output_i);

																}

												}

								}

								return	jacobian;

				}	

}

Tanh



Another	common	activation	function	utilizes	the	hyperbolic	tangent	 	with	the	form	shown	here:

Once	again,	the	derivative	 	reuses	the	value	calculated	from	 :

public	class	TanhOutputFunction	implements	OutputFunction	{

				@Override

				public	RealMatrix	getOutput(RealMatrix	input,	RealMatrix	weight,

																																RealVector	bias)	{

								return	MatrixOperations.XWplusB(input,	weight,	bias,	new	Tanh());

				}

				@Override

				public	RealMatrix	getDelta(RealMatrix	errorGradient,	RealMatrix	output)	{

								//	this	changes	output	permanently

								output.walkInOptimizedOrder(

												new	UnivariateFunctionMapper(new	TanhGradient()));

								

								//	output	is	now	the	output	gradient

								return	MatrixOperations.ebeMultiply(errorGradient,	output);

				}

				

				private	class	TanhGradient	implements	UnivariateFunction	{

								@Override

								public	double	value(double	x)	{

												return	(1	-	x	*	x);

								}			

				}			

}

Linear	model	estimator
Using	the	gradient	descent	algorithm	and	the	appropriate	loss	functions,	we	can	build	a	simple	linear
estimator	that	updates	the	parameters	iteratively	using	the	delta	rule.	This	applies	only	if	the	correct
pairing	of	output	function	and	loss	function	are	used,	as	shown	in	Table	5-1.

Table	5-1.	Delta	rule	pairings

Output	function Loss	function

Linear Quadratic

Logistic Bernoulli	cross-entropy

Softmax Multinomial	cross-entropy

Tanh Two-point	cross-entropy

We	can	then	extend	the	IterativeLearningProcess	class	and	add	code	for	the	output	function
prediction	and	updates:

public	class	LinearModelEstimator	extends	IterativeLearningProcess	{

				private	final	LinearModel	linearModel;



				private	final	Optimizer	optimizer;

				public	LinearModelEstimator(

												LinearModel	linearModel,

												LossFunction	lossFunction,

												Optimizer	optimizer)	{

								super(lossFunction);

								this.linearModel	=	linearModel;

								this.optimizer	=	optimizer;

				}

				@Override

				public	RealMatrix	predict(RealMatrix	input)	{

								return	linearModel.getOutput(input);

				}

				

				@Override

				protected	void	update(RealMatrix	input,	RealMatrix	target,

																										RealMatrix	output)	{

								RealMatrix	weightGradient	=	

												input.transpose().multiply(output.subtract(target));

								RealMatrix	weightUpdate	=	optimizer.getWeightUpdate(weightGradient);

								linearModel.addUpdateToWeight(weightUpdate);

								

								RealVector	h	=	new	ArrayRealVector(input.getRowDimension(),	1.0);

								RealVector	biasGradient	=	output.subtract(target).preMultiply(h);

								RealVector	biasUpdate	=	optimizer.getBiasUpdate(biasGradient);

								linearModel.addUpdateToBias(biasUpdate);

				}

				public	LinearModel	getLinearModel()	{

								return	linearModel;

				}

				public	Optimizer	getOptimizer()	{

								return	optimizer;

				}

}

Iris	example
The	Iris	dataset	is	a	great	example	to	explore	a	linear	classifier:

/*	get	data	and	split	into	train	/	test	sets	*/

Iris	iris	=	new	Iris();

MatrixResampler	resampler	=	new	MatrixResampler(iris.getFeatures(),

iris.getLabels());

resampler.calculateTestTrainSplit(0.40,	0L);

								

/*	set	up	the	linear	estimator	*/

LinearModelEstimator	estimator	=	new	LinearModelEstimator(

				new	LinearModel(4,	3,	new	SoftmaxOutputFunction()),

				new	SoftMaxCrossEntropyLossFunction(),

				new	DeltaRule(0.001));

estimator.setBatchSize(0);

estimator.setMaxIterations(6000);

estimator.setTolerance(10E-6);

/*	learn	the	model	parameters	*/								

estimator.learn(resampler.getTrainingFeatures(),	resampler.getTrainingLabels());

								

/*	predict	on	test	data	*/

RealMatrix	prediction	=	estimator.predict(resampler.getTestingFeatures());

								

/*	results	*/

ClassifierAccuracy	accuracy	=	new	ClassifierAccuracy(prediction,

	resampler.getTestingLabels());

estimator.isConverged();												//	true

estimator.getNumIterations();							//	3094

estimator.getLoss();																//	0.0769

accuracy.getAccuracy();													//	0.983

accuracy.getAccuracyPerDimension();	//	{1.0,	0.92,	1.0}



Deep	Networks
Feeding	the	output	of	a	linear	model	into	another	linear	model	creates	a	nonlinear	system	capable	of
modeling	complicated	behavior.	A	system	with	multiple	layers	is	known	as	a	deep	network.	While	a
linear	model	has	an	input	and	output,	a	deep	network	adds	multiple	“hidden”	layers	between	the	input	and
output.	Most	explanations	of	deep	networks	address	the	input,	hidden,	and	output	layers	as	separate
quantities.	In	this	book,	however,	we	take	the	alternative	viewpoint	that	a	deep	network	is	nothing	more
than	a	composition	of	linear	models.	We	can	then	view	a	deep	network	purely	as	a	linear	algebra
problem.	Figure	5-5	demonstrates	how	a	multilayer	neural	network	can	be	viewed	as	a	chain	of	linear
models.

Figure	5-5.	Deep	network

A	network	layer
We	can	extend	the	concept	of	a	linear	model	to	the	form	of	a	network	layer	where	we	must	persist	the
input,	output,	and	errors.	The	code	for	the	network	layer	is	then	an	extension	of	the	LinearModel	class:

public	class	NetworkLayer	extends	LinearModel	{

				

				RealMatrix	input;

				RealMatrix	inputError;

				RealMatrix	output;

				RealMatrix	outputError;

				Optimizer	optimizer;

				

				public	NetworkLayer(int	inputDimension,	int	outputDimension,

												OutputFunction	outputFunction,	Optimizer	optimizer)	{

								super(inputDimension,	outputDimension,	outputFunction);

								this.optimizer	=	optimizer;

				}

				public	void	update()	{

								//back	propagate	error

								/*	D	=	eps	o	f'(XW)	where	o	is	Hadamard	product	

								or	J	f'(XW)	where	J	is	Jacobian	*/

								RealMatrix	deltas	=	getOutputFunction().getDelta(outputError,	output);

								

								/*	E_out	=	D	W^T	*/

								inputError	=	deltas.multiply(getWeight().transpose());

								

								/*	W	=	W	-	alpha	*	delta	*	input	*/

								RealMatrix	weightGradient	=	input.transpose().multiply(deltas);

	

								/*	w_{t+1}	=	w_{t}	+	\delta	w_{t}	*/

								addUpdateToWeight(optimizer.getWeightUpdate(weightGradient));

								

								//	this	essentially	sums	the	columns	of	delta	and	that	vector	is	grad_b

								RealVector	h	=	new	ArrayRealVector(input.getRowDimension(),	1.0);

								RealVector	biasGradient	=	deltas.preMultiply(h);

								addUpdateToBias(optimizer.getBiasUpdate(biasGradient));

				}

}

Feed	forward



To	calculate	the	network	output,	we	must	feed	the	input	through	each	layer	of	the	network	in	the	forward
direction.	The	network	input	X1	is	used	to	compute	the	output	of	the	first	layer:

We	set	the	first-layer	output	to	the	second-layer	input:

The	output	of	the	second	layer	is	shown	here:

In	general,	the	output	of	each	layer	l	after	the	first	layer	is	expressed	in	terms	of	the	prior-layer	output:

The	feed-forward	process	for	L	layers	then	appears	as	a	series	of	nested	linear	models:

Another	simpler	way	to	write	this	expression	is	as	a	composition	of	functions:

In	addition	to	unique	weights,	each	layer	can	take	a	different	form	for	the	activation	function.	In	this	way,
it	is	clear	that	a	feed-forward,	deep	neural	network	(a.k.a.	multilayer	perceptron)	is	nothing	more	than	a
composition	of	arbitrary	linear	models.	The	result,	however,	is	a	rather	complex	nonlinear	model.

Back	propagation
At	this	point,	we	need	to	back-propagate	the	network	output	error.	For	the	last	layer	(the	output	layer),	we

back-propagate	the	loss	gradient	 .	For	compatible	loss	function–output	function	pairs,	this	is
identical	to	a	linear	model	estimator.	As	formulated	in	“Gradient	Descent	Optimizer”,	it	is	then
convenient	to	define	a	new	quantity,	the	layer	delta,	D,	which	is	the	matrix	multiplication	of	Yerr	with	the
tensor	of	output	function	Jacobians:



In	most	cases,	the	gradient	of	the	output	function	will	suffice	and	the	prior	expression	can	be	simplified	as
as	follows:

We	store	the	quantity	D	since	it	is	used	in	two	places	that	must	be	calculated	in	order.	The	back-
propagated	error	is	updated	first:

The	weight	and	bias	gradients	are	then	calculated	as	follows,	where	h	is	an	 -length	vector	of	1s.

Note	that	the	expression	hTD	is	the	equivalent	of	summing	each	column	of	D.	The	layer	weights	can	then
be	updated	using	the	optimization	rule	of	choice	(usually	gradient	descent	of	some	variety).	That
completes	all	the	calculations	needed	for	the	network	layer!	Then	set	the	Yerr	of	the	next	layer	down	to	the
freshly	calculated	Xerr	and	repeat	the	process	until	the	first	layer’s	parameters	are	updated.

WARNING
Make	sure	to	calculate	the	back-propagated	error	before	updating	the	weight!

Deep	network	estimator
Learning	the	parameters	of	a	deep	network	is	accomplished	with	the	same	iterative	process	as	a	linear
model.	In	this	case,	the	entire	feed-forward	process	acts	as	one	prediction	step	and	the	back	propagation
process	acts	as	one	update	step.	We	implement	a	deep	network	estimator	by	extending	the
IterativeLearningProcess	and	building	layers	of	linear	models	subclassed	as	NetworkLayers:

public	class	DeepNetwork	extends	IterativeLearningProcess	{

				private	final	List<NetworkLayer>	layers;

				public	DeepNetwork()	{



								this.layers	=	new	ArrayList<>();

				}

				public	void	addLayer(NetworkLayer	networkLayer)	{

								layers.add(networkLayer);

				}

				

				@Override

				public	RealMatrix	predict(RealMatrix	input)	{

								

								/*	the	initial	input	MUST	BE	DEEP	COPIED	or	is	overwritten	*/

								RealMatrix	layerInput	=	input.copy();

								

								for	(NetworkLayer	layer	:	layers)	{

												layer.setInput(layerInput);

												

												/*	calc	the	output	and	set	to	next	layer	input*/

												RealMatrix	output	=	layer.getOutput(layerInput);

												layer.setOutput(output);

												

												/*	

																does	not	need	a	deep	copy,	but	be	aware	that	

																every	layer	input	shares	memory	of	prior	layer	output

												*/

												layerInput	=	output;

								}

								/*	layerInput	is	holding	the	final	output	...	get	a	deep	copy	*/

								return	layerInput.copy();

				}

				

				@Override

				protected	void	update(RealMatrix	input,	RealMatrix	target,

																										RealMatrix	output)	{

								

								/*	gradient	of	the	network	error	and	starts	the	back	prop	process	*/

								RealMatrix	layerError	=	getLossFunction()

																																			.getLossGradient(output,	target).copy();

								

								/*	create	list	iterator	and	set	cursor	to	last!	*/

								ListIterator	li	=	layers.listIterator(layers.size());

								

								while	(li.hasPrevious())	{

												NetworkLayer	layer	=	(NetworkLayer)	li.previous();	

												/*	get	error	input	from	higher	layer	*/

												layer.setOutputError(layerError);

												/*	this	back	propagates	the	error	and	updates	weights	*/

												layer.update();

												/*	pass	along	error	to	next	layer	down	*/

												layerError	=	layer.getInputError();

								}

				}

}

MNIST	example
MNIST,	the	classic	handwritten	digits	dataset,	is	often	used	for	testing	learning	algorithms.	Here	we	get
94	percent	accuracy	by	using	a	simple	network	with	two	hidden	layers:

MNIST	mnist	=	new	MNIST();

								

DeepNetwork	network	=	new	DeepNetwork();

								

/*	input,	hidden	and	output	layers	*/

network.addLayer(new	NetworkLayer(784,	500,	new	TanhOutputFunction(),

				new	GradientDescentMomentum(0.0001,	0.95)));

								

network.addLayer(new	NetworkLayer(500,	300,	new	TanhOutputFunction(),

				new	GradientDescentMomentum(0.0001,	0.95)));

								

network.addLayer(new	NetworkLayer(300,	10,	new	SoftmaxOutputFunction(),

				new	GradientDescentMomentum(0.0001,	0.95)));

								

/*	runtime	parameters	*/

network.setLossFunction(new	SoftMaxCrossEntropyLossFunction());



network.setMaxIterations(6000);

network.setTolerance(10E-9);

network.setBatchSize(100);

								

/*	learn	*/

network.learn(mnist.trainingData,	mnist.trainingLabels);

								

/*	predict	*/

RealMatrix	prediction	=	network.predict(mnist.testingData);

								

/*	compute	accuracy	*/

ClassifierAccuracy	accuracy	=	

				new	ClassifierAccuracy(prediction,	mnist.testingLabels);

								

/*	results	*/

network.isConverged();	//	false

network.getNumIterations();	//	10000

network.getLoss();	//	0.00633

accuracy.getAccuracy();	//	0.94



Chapter	6.	Hadoop	MapReduce

You	write	MapReduce	jobs	in	Java	when	you	need	low-level	control	and	want	to	optimize	or	streamline
your	big	data	pipeline.	Using	MapReduce	is	not	required,	but	it	is	rewarding,	because	it	is	a	beautifully
designed	system	and	API.	Learning	the	basics	can	get	you	very	far,	very	quickly,	but	before	you	embark	on
writing	a	customized	MapReduce	job,	don’t	overlook	the	fact	that	tools	such	as	Apache	Drill	enable	you
to	write	standard	SQL	queries	on	Hadoop.

This	chapter	assumes	you	have	a	running	Hadoop	Distributed	File	System	(HDFS)	on	your	local	machine
or	have	access	to	a	Hadoop	cluster.	To	simulate	how	a	real	MapReduce	job	would	run,	we	can	run
Hadoop	in	pseudodistributed	mode	on	one	node,	either	your	localhost	or	a	remote	machine.	Considering
how	much	CPU,	RAM,	and	storage	resources	we	can	fit	on	one	box	(laptop)	these	days,	you	can,	in
essence,	create	a	mini	supercomputer	capable	of	running	fairly	massive	distributed	jobs.	You	can	get
pretty	far	on	your	localhost	(on	a	subset	of	data)	and	then	scale	up	to	a	full	cluster	when	your	application
is	ready.

If	the	Hadoop	client	is	properly	installed,	you	can	get	a	complete	listing	of	all	available	Hadoop
operations	by	simply	typing	the	following:

bash$	hadoop



Hadoop	Distributed	File	System
Apache	Hadoop	comes	with	a	command-line	tool	useful	for	accessing	the	Hadoop	filesystem	and
launching	MapReduce	jobs.	The	filesystem	access	command	fs	is	invoked	as	follows:

bash$	hadoop	fs	<command>	<args>

The	command	is	any	number	of	standard	Unix	filesystem	commands	such	as	ls,	cd,	or	mkdir	preceded	by
a	hyphen.	For	example,	to	list	all	the	items	in	the	HDFS	root	directory,	type	this:

bash$	hadoop	fs	-ls	/

Note	the	inclusion	of	the	/	for	root.	If	it	were	not	included	at	all,	the	command	would	return	nothing	and
might	fool	you	into	thinking	that	your	HDFS	is	empty!	Typing	hadoop	fs	will	print	out	all	the	filesystem
operations	available.	Some	of	the	more	useful	operations	involve	copying	data	to	and	from	HDFS,
deleting	directories,	and	merging	data	in	a	directory.

To	copy	local	files	into	a	Hadoop	filesystem:

bash$	hadoop	fs	-copyFromLocal	<localSrc>	<dest>

To	copy	a	file	from	HDFS	to	your	local	drive:

bash$	hadoop	fs	-copyToLocal	<hdfsSrc>	<localDest>

After	a	MapReduce	job,	there	will	most	likely	be	many	files	contained	in	the	output	directory	of	the	job.
Instead	of	retrieving	these	one	by	one,	Hadoop	has	a	convenient	operation	for	merging	the	files	into	one
and	then	storing	the	results	locally:

bash$	hadoop	fs	-getmerge	<hdfs_output_dir>	<my_local_dir>

One	essential	operation	for	running	MapReduce	jobs	is	to	first	remove	the	output	directory	if	it	already
exists,	because	MapReduce	will	fail,	almost	immediately,	if	it	detects	the	output	directory:

bash$	hadoop	fs	-rm	rf	<hdfs_dir>



MapReduce	Architecture
MapReduce	invokes	the	embarrassingly	parallel	paradigm	of	distributed	computing.	Initially,	the	data	is
broken	into	chunks,	and	portions	are	sent	to	identical	mapper	classes	that	extract	key-value	pairs	from	the
data,	line	by	line.	The	key-value	pairs	are	then	partitioned	into	key-list	pairs	where	the	lists	are	sorted.
Typically,	the	number	of	partitions	is	the	number	of	reduce	jobs,	but	this	is	not	required.	In	fact,	multiple
key-list	groups	can	be	in	the	same	partition	and	reducer,	but	each	key-list	group	is	guaranteed	not	to	be
split	across	partitions	or	reducers.	The	general	flow	of	data	through	a	MapReduce	framework	is
displayed	in	Figure	6-1.

Figure	6-1.	MapReduce	schema

Say,	for	example,	we	have	data	like	this:

San	Francisco,	2012

New	York,	2012

San	Francisco,	2017

New	York,	2015

New	York,	2016

The	mapper	could	output	key-value	pairs	such	as	(San	Francisco,	2012)	for	each	line	in	the	dataset.	Then
the	partitioner	would	collect	the	data	by	key	and	sort	the	list	of	values:

(San	Francisco,	[2012,	2017])

(New	York,	[2012,	2015,	2016])

We	could	designate	the	reducer’s	function	to	output	the	maximum	year	such	that	the	final	output	(written	to
the	output	directory)	would	look	like	this:

San	Francisco,	2017

New	York,	2016

It	is	important	to	consider	that	the	Hadoop	MapReduce	API	allows	compound	keys	and	customizable
comparators	for	partitioning	keys	and	sorting	values.



Writing	MapReduce	Applications
Although	there	are	more	than	a	few	ways	to	store	and	shuttle	around	data	in	the	Hadoop	ecosystem,	we
will	focus	on	plain	old	text	files.	Whether	the	underlying	data	is	stored	as	a	string,	CSV,	TSV,	or	JSON
data	string,	we	easily	read,	share,	and	manipulate	the	data.	Hadoop	also	provides	resources	for	reading
and	writing	its	own	Sequence	and	Map	file	formats,	and	you	may	want	to	explore	various	third-party
serialization	formats	such	as	Apache	Avro,	Apache	Thrift,	Google	Protobuf,	Apache	Parquet,	and	others.
All	of	these	provide	operational	and	efficiency	advantages.	However,	they	do	add	a	layer	of	complexity
that	you	must	consider.



Anatomy	of	a	MapReduce	Job
A	basic	MapReduce	job	has	just	a	few	essential	features.	The	main	guts	of	the	overriden	run()	method
contain	a	singleton	instance	of	the	Job	class:

public	class	BasicMapReduceExample	extends	Configured	implements	Tool	{

				public	static	void	main(String[]	args)	throws	Exception	{

								int	exitCode	=	ToolRunner.run(new	BasicMapReduceExample(),	args);

								System.exit(exitCode);

				}

				@Override

				public	int	run(String[]	args)	throws	Exception	{

								Job	job	=	Job.getInstance(getConf());

								job.setJarByClass(BasicMapReduceExample.class);

								job.setJobName("BasicMapReduceExample");

								

								FileInputFormat.addInputPath(job,	new	Path(args[0]));

								FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

								return	job.waitForCompletion(true)	?	0	:	1;

				}

}

Note	that	because	we	have	not	defined	any	Mapper	or	Reducer	classes,	this	job	will	use	the	default
classes	that	copy	the	input	files	to	the	output	directory,	unchanged.	Before	we	delve	into	customizing
Mapper	and	Reducer	classes,	we	must	first	understand	the	exclusive	data	types	that	are	required	by
Hadoop	MapReduce.



Hadoop	Data	Types
Data	must	be	shuttled	around	through	the	MapReduce	universe	in	a	format	that	is	both	reliable	and
efficient.	Unfortunately	(according	to	the	authors	of	Hadoop),	the	native	Java	primitive	types	(e.g.,
boolean,	int,	double)	and	the	more	complex	types	(e.g.,	String,	Map)	do	not	travel	well!	For	this
reason,	the	Hadoop	ecosystem	has	its	own	version	of	serializable	types	that	are	required	in	all
MapReduce	applications.	Note	that	all	the	regular	Java	types	are	perfectly	fine	inside	our	MapReduce
code.	It	is	only	for	the	connections	between	MapReduce	components	(between	mapper	and	reducers)
where	we	need	to	convert	native	Java	types	to	Hadoop	types.

Writable	and	WritableComparable	types
The	Java	primitive	types	are	all	represented,	but	the	most	useful	ones	are	BooleanWritable,
IntWritable,	LongWritable,	and	DoubleWritable.	A	Java	String	type	is	represented	by	Text.	A	null
is	NullWritable,	which	comes	in	handy	when	we	have	no	data	to	pass	through	a	particular	key	or	value
in	a	MapReduce	job.	There	is	even	an	MD5Hash	type,	which	could	be	used,	among	other	things,	when	we
are	using	a	key	that	is	a	hash	corresponding	to	userid	or	some	other	unique	identifier.	There	is	also	a
MapWritable	for	creating	a	Writable	comparable	HashMap.	All	of	these	types	are	comparable	(e.g.,	they
have	hash()	and	equals()	methods	that	enable	comparison	and	sorting	events	in	the	MapReduce	job).
Of	course,	there	are	more	types,	but	these	are	a	few	of	the	more	useful	ones.	In	general,	a	Hadoop	type
takes	the	Java	primitive	as	an	argument	in	the	constructor:

Int	count	=	42;

IntWritable	countWritable	=	new	IntWritable(count);

String	data	=	"The	is	a	test	string";

Text	text	=	new	Text(data);

Note	that	Java	types	are	used	inside	your	code	for	Mapper	and	Reducer	classes.	Only	the	key	and	value
inputs	and	outputs	for	those	instances	must	use	the	Hadoop	writable	(and	writable	comparable	if	a	key)
types,	because	this	is	how	data	is	shuttled	between	the	MapReduce	components.

Custom	Writable	and	WritableComparable	types
At	times	we	need	a	specialized	type	not	covered	by	Hadoop.	In	general,	a	Hadoop	type	must	implement
Writable,	which	handles	the	object’s	serialization	with	a	write()	method	and	deserialization	with	a
read()	method.	However,	if	the	object	will	be	used	as	a	key,	it	must	implement	WritableComparable,
because	the	compare To()	and	hashCode()	methods	will	be	required	during	partitioning	and	sorting.

Writable
Because	the	Writable	interface	has	only	two	methods,	write()	and	readFields(),	a	basic	custom
writable	needs	to	override	only	these	methods.	However,	we	can	add	a	constructor	that	takes	arguments
so	that	we	can	instantiate	the	object	in	the	same	way	we	created	IntWritable	and	Text	instances	in	the
previous	example.	In	addition,	if	we	add	a	static	read()	method,	we	will	require	a	no-argument
constructor:

public	class	CustomWritable	implements	Writable	{



				

				private	int	id;

				private	long	timestamp;

							

				public	CustomWritable()	{

				}

				public	CustomWritable(int	id,	long	timestamp)	{

								this.id	=	id;

								this.timestamp	=	timestamp;

				}

				public	void	write(DataOutput	out)	throws	IOException	{

								out.writeInt(id);

								out.writeLong(timestamp);

				}

							

				public	void	readFields(DataInput	in)	throws	IOException	{

								id	=	in.readInt();

								timestamp	=	in.readLong();

				}

							

				public	static	CustomWritable	read(DataInput	in)	throws	IOException	{

								CustomWritable	w	=	new	CustomWritable();

								w.readFields(in);

								return	w;

				}

}

WritableComparable
If	our	custom	writable	will	be	used	a	key,	we	will	need	hashCode()	and	compareTo()	methods	in
addition	to	the	write()	and	readField()	methods:

public	class	CustomWritableComparable	implements	WritableComparable	{

				private	int	id;

				private	long	timestamp;

							

				public	CustomWritable()	{

				}

				public	CustomWritable(int	id,	long	timestamp)	{

								this.id	=	id;

								this.timestamp	=	timestamp;

				}

				public	void	write(DataOutput	out)	throws	IOException	{

								out.writeInt(id);

								out.writeLong(timestamp);

				}

							

				public	void	readFields(DataInput	in)	throws	IOException	{

								id	=	in.readInt();

								timestamp	=	in.readLong();

				}

							

				public	int	compareTo(CustomWritableComparable	o)	{

								int	thisValue	=	this.value;

								int	thatValue	=	o.value;

								return	(thisValue	<	thatValue	?	-1	:	(thisValue==thatValue	?	0	:	1));

				}

				public	int	hashCode()	{

								final	int	prime	=	31;

								int	result	=	1;

								result	=	prime	*	result	+	id;

								result	=	prime	*	result	+	(int)	(timestamp	^	(timestamp	>>>	32));

								return	result

				}

}



Mappers
The	Mapper	class	is	what	maps	the	raw	input	data	into	a	new	and	typically	smaller	sized	data	structure.	In
general,	you	do	not	need	every	piece	of	data	from	each	line	of	the	input	files,	but	rather	a	select	few	items.
In	some	cases,	the	line	may	be	discarded	entirely.	This	is	your	chance	to	decide	what	data	will	go	into	the
next	round	of	processing.	Think	of	this	step	as	a	way	of	transforming	and	filtering	the	raw	data	into	only
the	parts	we	actually	need.	If	you	do	not	include	a	Mapper	instance	in	a	MapReduce	job,	the
IdentityMapper	will	be	assumed,	which	just	passes	all	the	data	directly	through	to	the	reducer.	And	if
there	is	no	reducer,	input	will	be	essentially	copied	to	output.

Generic	mappers
Several	common	mappers	that	are	already	included	with	Hadoop	can	be	designated	in	the	MapReduce
job.	The	default	is	the	IdentityMapper,	which	outputs	the	exact	data	it	inputs.	The	InverseMapper
switches	the	key	and	value.	There	is	also	TokenCounterMapper,	which	outputs	each	token	and	its	count
as	a	Text,	IntWritable	key-value	pair.	The	RegexMapper	outputs	a	regex	match	as	the	key	and	constant
value	of	1.	If	none	of	these	work	for	your	application,	consider	writing	your	own	customized	mapper
instance.

Customizing	a	mapper
Parsing	text	files	within	a	Mapper	class	is	much	the	same	as	parsing	lines	from	a	regular	text	file,	as	in
Chapter	1.	The	only	required	method	is	the	map()	method.	The	fundamental	purpose	of	this	map()	method
is	to	parse	one	line	of	input	and	output	a	key-value	pair	via	the	context.write()	method:

public	class	ProductMapper	extends	

				Mapper<LongWritable,	Text,	IntWritable,	Text>	{

				@Override

				protected	void	map(LongWritable	key,	Text	value,	Context	context)

								throws	IOException,	InterruptedException	{

								try	{

												/*	each	line	of	file	is	<userID>,	<productID>,	<timestamp>	*/

												String[]	items	=	value.toString().split(",");

												int	userID	=	Integer.parseInt(items[0]);

												String	productID	=	items[1];

												context.write(new	IntWritable(userID),	new	Text(productID));

								}	catch	(NumberFormatException	|	IOException	|	InterruptedException	e)	{

												context.getCounter("mapperErrors",	e.getMessage()).increment(1L);

								}

				}

				

}

There	are	also	startup()	and	cleanup()	methods.	The	startup()	method	is	run	once	when	the	Mapper
class	is	instantiated.	You	probably	won’t	need	it,	but	it	comes	in	handy,	for	example,	when	you	need	a
data	structure	that	needs	to	be	used	by	each	call	to	the	map()	method.	Likewise,	you	probably	won’t	need
the	cleanup()	method,	but	it	is	called	once	after	the	last	call	to	map()	and	is	used	to	do	any	cleanup
actions.	There	is	also	a	run()	method,	which	does	the	actual	business	of	mapping	the	data.	There	is	no
real	reason	to	override	this	method,	and	it’s	best	to	leave	it	alone	unless	you	have	a	good	reason	to



implement	your	own	run()	method.	In	“MapReduce	Examples”,	we	show	how	to	utilize	the	setup()
method	for	some	unique	computations.

To	use	a	custom	mapper,	you	must	designate	it	in	the	MapReduce	application	and	set	the	map	output	key
and	value	types:

job.setMapperClass(ProductMapper.class);

job.setMapOutputKeyClass(IntWritable.class);

job.setMapOutputValueClass(Text.class);



Reducers
The	role	of	the	Reducer	is	to	iterate	over	the	list	of	values	associated	with	a	key	and	calculate	a	singular
output	value.	Of	course,	we	can	customize	the	output	type	of	the	Reducer	to	return	anything	we	would	like
as	long	as	it	implements	Writable.	It	is	important	to	note	that	each	reducer	will	process	at	least	one	key
and	all	its	values,	so	you	do	not	need	to	worry	that	some	values	belonging	to	a	key	have	been	sent
somewhere	else.	The	number	of	reducers	is	also	the	number	of	output	files.

Generic	reducers
If	a	Reducer	instance	is	not	specified,	the	MapReduce	job	sends	mapped	data	directly	to	the	output.
There	are	some	useful	reducers	in	the	Hadoop	library	that	come	in	handy.	The	IntSumReducer	and
LongSumReducer	take	respective	IntWritable	and	LongWritable	integers	as	values	in	the	reduce()
method.	The	outputs	are	then	the	sum	of	all	the	values.	Counting	is	such	a	common	use	case	for
MapReduce	that	these	classes	are	purely	convenient.

Customizing	a	reducer
The	code	for	a	reducer	has	a	similar	structure	to	the	mapper.	We	usually	need	to	override	only	reduce()
with	our	own	code,	and	on	occasion	we’ll	use	the	setup()	method	when	we	are	building	a	specific	data
structure	or	file-based	resource	that	must	be	utilized	by	all	reducers.	Note	that	the	reducer	signature	takes
an	Iterable	of	the	value	type	because	after	the	mapper	phase,	all	the	data	for	a	particular	key	is	grouped
and	sorted	into	a	list	(Iterable)	and	input	here:

public	class	CustomReducer	extends	

				Reducer<IntWritable,	Text,	IntWritable,	IntWritable>{

				

				@Override

				protected	void	reduce(IntWritable	key,	Iterable<Text>	values,

								Context	context)	throws	IOException,	InterruptedException	{	

								int	someValue	=	0;								

								/*	iterate	over	the	values	and	do	something	*/

								for	(Text	value	:	values)	{

												//	use	value	to	augment	someValue

								}

								context.write(key,	new	IntWritable(someValue));

				}

The	Reducer	class	and	its	key	and	value	output	types	need	to	be	specified	in	the	MapReduce	job:

job.setReducerClass(CustomReducer.class);

job.setOutputKeyClass(IntWritable.class);

job.setOutputValueClass(IntWritable.class);



The	Simplicity	of	a	JSON	String	as	Text
JSON	data	(where	each	row	of	a	file	is	a	separate	JSON	string)	is	everywhere,	and	for	good	reason.
Many	tools	are	capable	of	ingesting	JSON	data,	and	its	human	readability	and	built-in	schema	are	really
helpful.	In	the	MapReduce	world,	using	JSON	data	as	input	data	eliminates	the	need	for	custom	writables
because	the	JSON	string	can	be	serialized	in	the	Hadoop	Text	type.	This	process	can	be	as	simple	as
using	JSONObject	right	in	the	map()	method.	Or	you	can	create	a	class	to	consume	the
value.toString()	for	more	complicated	mapping	schemas.

public	class	JSONMapper	extends	Mapper<LongWritable,	Text,	Text,	Text>	{

				@Override

				protected	void	map(LongWritable	key,	Text	value,	Context	context)	

								throws	IOException,	InterruptedException	{

								JSONParser	parser	=	new	JSONParser();

								try	{

												JSONObject	obj	=	(JSONObject)	parser.parse(value.toString());

												

												//	get	what	you	need	from	this	object

												String	userID	=	obj.get("user_id").toString();

												String	productID	=	obj.get("product_id").toString();

												int	numUnits	=	Integer.parseInt(obj.get("num_units").toString());

												

												JSONObject	output	=	new	JSONObject();

												output.put("productID",	productID);

												output.put("numUnits",	numUnits);

												/*	many	more	key	value	pairs,	including	arrays,	can	be	added	here	*/

												

												context.write(new	Text(userID),	new	Text(output.toString()));

												

												

								}	catch	(ParseException	ex)	{

												//error	parsing	json

								}

								

				}

}

This	also	works	great	for	outputting	the	data	from	the	final	reducer	as	a	Text	object.	The	final	data	file
will	be	in	JSON	data	format	to	enable	efficient	use	down	the	rest	of	your	pipeline.	Now	the	reducer	can
input	a	Text,	Text	key-value	pair	and	process	the	JSON	with	JSONObject.	The	advantage	is	that	we	did
not	have	to	create	a	complicated	custom	WritableComparable	for	this	data	structure.



Deployment	Wizardry
There	are	many	options	and	command-line	switches	for	running	a	MapReduce	job.	Remember	that	before
you	run	a	job,	the	output	directory	needs	to	be	deleted	first:

bash$	hadoop	fs	-rm	-r	<path>/output

Running	a	standalone	program
You	will	certainly	see	(and	probably	write	yourself)	one	file	that	contains	the	entire	MapReduce	job.	The
only	real	difference	is	that	you	must	define	any	custom	Mapper,	Reducer,	Writable,	and	so	forth,	as
static.	Otherwise,	the	mechanics	are	all	the	same.	The	obvious	advantage	is	that	you	have	a	completely
self-contained	job	without	any	worry	of	dependencies,	and	as	such,	you	don’t	have	to	worry	about	JARs,
and	so	forth.	Just	build	the	Java	file	(at	the	command	line	with	javac)	and	run	the	class	like	this:

bash$	hadoop	BasicMapReduceExample	input	output

Deploying	a	JAR	application
If	the	MapReduce	job	is	part	of	a	larger	project	that	has	become	a	JAR	possibly	containing	many	such
jobs,	you	will	need	to	deploy	from	the	JAR	and	designate	the	full	URI	of	the	job:

hadoop	jar	MyApp.jar	com.datascience.BasicMapReduceExample	input	output

Including	dependencies
Include	a	comma-separated	list	of	files	that	must	be	used	in	the	MapReduce	job	as	follows:

-files	file.dat,	otherFile.txt,	myDat.json

Any	JARs	required	can	be	added	with	a	comma-separated	list:

-libjars	myJar.jar,	yourJar.jar,	math.jar

Note	that	command-line	switches	such	as	-files	and	-libjars	must	be	placed	before	any	command
arguments	such	as	input	and	output.

Simplifying	with	a	BASH	script
At	some	point,	typing	all	this	text	in	the	command	line	is	error	prone	and	laborious.	So	is	scrolling
through	your	bash	history	to	find	that	command	you	launched	last	week.	You	can	create	custom	scripts	for
specific	tasks	that	take	command-line	arguments,	like	the	input	and	output	directories,	or	even	which	class
to	run.	Consider	putting	it	all	in	an	executable	bash	script	like	this:

#!/bin/bash

#	process	command-line	input	and	output	dirs

INPUT=$1

OUTPUT=$2

#	these	are	hardcoded	for	this	script

LIBJARS=/opt/math3.jar,	morejars.jar

FILES=/usr/local/share/meta-data.csv,	morefiles.txt



APP_JAR=/usr/local/share/myApp.jar

APP_CLASS=com.myPackage.MyMapReduceJob

#	clean	the	output	dir

hadoop	fs	-rm	-r	$OUTPUT

#	launch	the	job

hadoop	jar	$APP_JAR	$APP_CLASS	-files	$FILES	-libjars	$LIBJARS	$INPUT	$OUTPUT

Then	you	have	to	remember	to	make	the	script	executable	(just	once):

bash$	chmod	+x	runMapReduceJob.sh

And	then	run	it	like	this:

bash$	myJobs/runMapReduceJob.sh	inputDirGoesHere	outputDirGoesHere

Or	if	you	are	running	it	from	the	same	directory	that	the	script	is	located	in,	use	this:

bash$	./runMapReduceJob.sh	inputDirGoesHere	outputDirGoesHere



MapReduce	Examples
To	really	master	MapReduce,	you	need	to	practice.	There	is	no	better	way	to	understand	how	it	all	works
than	to	jump	in	and	start	solving	problems.	Although	the	system	may	seem	complex	and	cumbersome	at
first,	its	beauty	will	reveal	itself	as	you	have	some	successes.	Here	are	some	typical	examples	and	some
insightful	computations.



Word	Count
Here	we	use	the	built-in	mapper	class	for	counting	tokens,	TokenCounterMapper,	and	the	built-in
reducer	class	for	summing	integers,	IntSumReducer:

public	class	WordCountMapReduceExample	extends	Configured	implements	Tool	{

				public	static	void	main(String[]	args)	throws	Exception	{

								int	exitCode	=	ToolRunner.run(new	WordCountMapReduceExample(),	args);

								System.exit(exitCode);

				}

				@Override

				public	int	run(String[]	args)	throws	Exception	{

								Job	job	=	Job.getInstance(getConf());

								job.setJarByClass(WordCountMapReduceExample.class);

								job.setJobName("WordCountMapReduceExample");

								

								FileInputFormat.addInputPath(job,	new	Path(args[0]));

								FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

								job.setMapperClass(TokenCounterMapper.class);

								job.setMapOutputKeyClass(Text.class);

								job.setMapOutputValueClass(IntWritable.class);

								job.setReducerClass(IntSumReducer.class);

								job.setOutputKeyClass(Text.class);

								job.setOutputValueClass(IntWritable.class);

								job.setNumReduceTasks(1);

			

								return	job.waitForCompletion(true)	?	0	:	1;

				}

}

The	job	can	be	run	on	an	input	directory	that	has	any	type	of	text	file:

hadoop	jar	MyApp.jar	\\

com.datascience.WordCountMapReduceExample	input	output

The	output	can	be	viewed	with	the	following:

hadoop	fs	-cat	output/part-r-00000



Custom	Word	Count
We	may	notice	the	built-in	TokenCounterMapper	class	is	not	producing	the	results	we	like.	We	can
always	use	our	SimpleTokenizer	class	from	Chapter	4:

public	class	SimpleTokenMapper	extends	

				Mapper<LongWritable,	Text,	Text,	LongWritable>	{

				SimpleTokenizer	tokenizer;

				

				@Override

				protected	void	setup(Context	context)	throws	IOException	{

								//	only	keep	words	greater	than	three	chars

								tokenizer	=	new	SimpleTokenizer(3);

				}

				

				@Override

				protected	void	map(LongWritable	key,	Text	value,	Context	context)

				throws	IOException,	InterruptedException	{

								

								String[]	tokens	=	tokenizer.getTokens(value.toString());

								for	(String	token	:	tokens)	{

												context.write(new	Text(token),	new	LongWritable(1L));

								}

				}

}

Just	be	sure	to	set	the	appropriate	changes	in	the	job:

/*	mapper	settings	*/

job.setMapperClass(SimpleTokenMapper.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(LongWritable.class);

/*	reducer	settings	*/

job.setReducerClass(LongSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(LongWritable.class);



Sparse	Linear	Algebra
Imagine	that	we	have	a	large	matrix	(either	sparse	or	dense)	in	which	the	i,j	coordinates	and
corresponding	value	are	stored	in	each	line	of	the	file	in	the	format	<i,j,value>.	This	matrix	is	so	large
that	it	is	not	practical	to	load	it	into	RAM	for	further	linear	algebra	routines.	Our	goal	is	to	perform	the
matrix	vector	multiplication	with	an	input	vector	we	provide.	The	vector	has	been	serialized	so	that	the
file	can	be	included	in	the	MapReduce	job.

Imagine	we	have	stored	text	files	of	comma-	(or	tab-)	separated	values	across	many	nodes	in	our
distributed	filesystem.	If	the	data	is	stored	as	a	literal	i,j,value	text	string	(e.g.,	34,	290,	1.2362)	in
each	line	of	the	file,	then	we	can	write	a	simple	mapper	to	parse	each	line.	In	this	case,	we	will	do	matrix
multiplication,	and	as	you	may	recall,	that	process	requires	multiplying	each	row	of	the	matrix	by	the
column	vector	of	the	same	length.	Each	position	i	of	the	output	vector	will	then	take	the	same	index	as	the
corresponding	matrix	row.	So	we	will	use	the	matrix	row	i	as	the	key.	We	will	create	a	custom	writable
SparseMatrixWritable	that	contains	the	row	index,	column	index,	and	value	for	each	entry	in	the
matrix:

public	class	SparseMatrixWritable	implements	Writable	{

				int	rowIndex;	//	i

				int	columnIndex;	//	j

				double	entry;	//	the	value	at	i,j

				public	SparseMatrixWritable()	{

				}

				public	SparseMatrixWritable(int	rowIndex,	int	columnIndex,	double	entry)	{

								this.rowIndex	=	rowIndex;

								this.columnIndex	=	columnIndex;

								this.entry	=	entry;

				}

				

				@Override

				public	void	write(DataOutput	d)	throws	IOException	{

								d.writeInt(rowIndex);

								d.writeInt(rowIndex);

								d.writeDouble(entry);

				}

				@Override

				public	void	readFields(DataInput	di)	throws	IOException	{

								rowIndex	=	di.readInt();

								columnIndex	=	di.readInt();

								entry	=	di.readDouble();

				}

				

}

A	custom	mapper	will	read	in	each	line	of	text	and	parse	the	three	values,	using	the	row	index	as	the	key
and	the	SparseMatrixWritable	as	the	value:

public	class	SparseMatrixMultiplicationMapper

	extends	Mapper<LongWritable,	Text,	IntWritable,	SparseMatrixWritable>	{

				@Override

				protected	void	map(LongWritable	key,	Text	value,	Context	context)

								throws	IOException,	InterruptedException	{

								try	{

												String[]	items	=	value.toString().split(",");

												int	rowIndex	=	Integer.parseInt(items[0]);

												int	columnIndex	=	Integer.parseInt(items[1]);

												double	entry	=	Double.parseDouble(items[2]);

												SparseMatrixWritable	smw	=	new	SparseMatrixWritable(



												rowIndex,	columnIndex,	entry);

												context.write(new	IntWritable(rowIndex),	smw);

												//	NOTE	can	add	another	context.write()	for	

												//	e.g.,	a	symmetric	matrix	entry	if	matrix	is	sparse	upper	triag

								}	catch	(NumberFormatException	|	IOException	|	InterruptedException	e)	{

												context.getCounter("mapperErrors",	e.getMessage()).increment(1L);

								}

				}

}

The	reducer	must	load	in	the	input	vector	in	the	setup()	method,	and	then	in	the	reduce()	method	we
extract	column	indices	from	the	list	of	SparseMatrixWritable,	adding	them	to	a	sparse	vector.	The	dot
product	of	the	input	vector	and	sparse	vector	give	the	value	for	the	output	for	that	key	(e.g.,	the	value	of
the	resultant	vector	at	that	index).

public	class	SparseMatrixMultiplicationReducer	extends	Reducer<IntWritable,

																							SparseMatrixWritable,	IntWritable,	DoubleWritable>{

				

				private	RealVector	vector;

				

				@Override

				protected	void	setup(Context	context)	

								throws	IOException,	InterruptedException	{

								/*	unserialize	the	RealVector	object	*/

								//	NOTE	this	is	just	the	filename	

								//	please	include	the	resource	itself	in	the	dist	cache	

								//	via	-files	at	runtime

								//	set	the	filename	in	Job	conf	with	

								//	set("vectorFileName",	"actual	file	name	here")

								String	vectorFileName	=	context.getConfiguration().get("vectorFileName");

								try	(ObjectInputStream	in	=	new	ObjectInputStream(

								new	FileInputStream(vectorFileName)))	{

												vector	=	(RealVector)	in.readObject();

								}	catch(ClassNotFoundException	e)	{

												//	err

								}

				}

				

				@Override

				protected	void	reduce(IntWritable	key,	Iterable<SparseMatrixWritable>	values,	

				Context	context)

								throws	IOException,	InterruptedException	{	

								

								/*	rely	on	the	fact	that	rowVector	dim	==	input	vector	dim	*/

								RealVector	rowVector	=	new	OpenMapRealVector(vector.getDimension());

								

								for	(SparseMatrixWritable	value	:	values)	{

												rowVector.setEntry(value.columnIndex,	value.entry);

								}

								

								double	dotProduct	=	rowVector.dotProduct(vector);

								

								/*	only	write	the	nonzero	outputs,	

								since	the	Matrix-Vector	product	is	probably	sparse	*/

								if(dotProduct	!=	0.0)	{

												/*	this	outputs	the	vector	index	and	its	value	*/

												context.write(key,	new	DoubleWritable(dotProduct));

								}

				}

}

The	job	can	be	set	up	to	run	like	this:

public	class	SparseAlgebraMapReduceExample	extends	Configured	implements	Tool	{

				public	static	void	main(String[]	args)	throws	Exception	{

								int	exitCode	=	ToolRunner.run(new	SparseAlgebraMapReduceExample(),	args);



								System.exit(exitCode);

				}

				@Override

				public	int	run(String[]	args)	throws	Exception	{

								Job	job	=	Job.getInstance(getConf());

								job.setJarByClass(SparseAlgebraMapReduceExample.class);

								job.setJobName("SparseAlgebraMapReduceExample");

								

								//	third	command-line	arg	is	the	filepath	to	the	serialized	vector	file

								job.getConfiguration().set("vectorFileName",	args[2]);

								

								FileInputFormat.addInputPath(job,	new	Path(args[0]));

								FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

								job.setMapperClass(SparseMatrixMultiplicationMapper.class);

								job.setMapOutputKeyClass(IntWritable.class);

								job.setMapOutputValueClass(SparseMatrixWritable.class);

								job.setReducerClass(SparseMatrixMultiplicationReducer.class);

								job.setOutputKeyClass(IntWritable.class);

								job.setOutputValueClass(DoubleWritable.class);

								job.setNumReduceTasks(1);

			

								return	job.waitForCompletion(true)	?	0	:	1;

				}

}

This	can	be	run	with	the	following	command:

hadoop	jar	MyApp.jar	\\

com.datascience.SparseAlgebraMapReduceExample	\\

-files	/<path>/RandomVector.ser	input	output	RandomVector.ser

You	can	view	the	output	with	this:

hadoop	fs	-cat	output/part-r-00000



	



Appendix	A.	Datasets

All	datasets	are	stored	under

src/main/resources/datasets.	While	Java	class	codes	are

stored	under	src/main/java,	user	resources	are	stored

under	src/main/resources.	In	general,	we	use	the	JAR

loader	functionality	to	retrieve	contents	of	a	file	directly	from	the	JAR,

not	from	the	filesystem.



Anscombe’s	Quartet
Anscombe’s	quartet	is	a	set	of	four	x-y	pairs	of	data	with

remarkable	properties.	Although	the	x-y	plots	of	each	pair	look	completely

different,	the	data	has	the	properties	that	make	statistical	measures

almost	identical.	The	values	for	each	of	the	four	x-y	data	series	are	in

Table	A-1.

Table	A-1.	Anscombe’s	quartet	data

x1 y1 x2 y2 x3 y3 x4 y4

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

We	can	easily	hardcode	the	data	as	static

members	of	the	class:

public	class	Anscombe	{

				public	static	final	double[]	x1	=	{10.0,	8.0,	13.0,	9.0,	11.0,

																																							14.0,	6.0,	4.0,	12.0,	7.0,	5.0};

				public	static	final	double[]	y1	=	{8.04,	6.95,	7.58,	8.81,	8.33,

																																							9.96,	7.24,	4.26,	10.84,	4.82,	5.68};

				public	static	final	double[]	x2	=	{10.0,	8.0,	13.0,	9.0,	11.0,

																																							14.0,	6.0,	4.0,	12.0,	7.0,	5.0};

				public	static	final	double[]	y2	=	{9.14,	8.14,	8.74,	8.77,	9.26,

																																							8.10,	6.13,	3.10,	9.13,	7.26,	4.74};

				public	static	final	double[]	x3	=	{10.0,	8.0,	13.0,	9.0,	11.0,

																																							14.0,	6.0,	4.0,	12.0,	7.0,	5.0};

				public	static	final	double[]	y3	=	{7.46,	6.77,	12.74,	7.11,	7.81,

																																							8.84,	6.08,	5.39,	8.15,	6.42,	5.73};

				public	static	final	double[]	x4	=	{8.0,	8.0,	8.0,	8.0,	8.0,	8.0,

																																							8.0,	19.0,	8.0,	8.0,	8.0};

				public	static	final	double[]	y4	=	{6.58,	5.76,	7.71,	8.84,	8.47,

																																							7.04,	5.25,	12.50,	5.56,	7.91,	6.89};

}

Then	we	can	call	any	array:

double[]	x1	=	Anscombe.x1;



Sentiment
This	is	the	sentiment-labeled	dataset	from
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences.

Download	three	files	and	place	them	in

src/main/resources/datasets/sentiment.	They	contain

data	from	IMDb,	Yelp,	and	Amazon.	There	is	a	single	sentence	and	then	a

tab-delimited	0	or	1	corresponding	to	respective	negative	or	positive

sentiment.	Not	all	sentences	have	a	corresponding	label.

IMDb	has	1,000	sentences,	with	500	positive	(1)	and	500	negative

(0).	Yelp	has	3,729	sentences,	with	500	positive	(1)	and	500	negative	(0).

Amazon	has	15,004	sentences,	with	500	positive	(1)	and	500	negative

(0):

public	class	Sentiment	{

				private	final	List<String>	documents	=	new	ArrayList<>();

				private	final	List<Integer>	sentiments	=	new	ArrayList<>();

				private	static	final	String	IMDB_RESOURCE	=	

				"/datasets/sentiment/imdb_labelled.txt";

				private	static	final	String	YELP_RESOURCE	=	

				"/datasets/sentiment/yelp_labelled.txt";

				private	static	final	String	AMZN_RESOURCE	=	

				"/datasets/sentiment/amazon_cells_labelled.txt";

				public	enum	DataSource	{IMDB,	YELP,	AMZN};

				public	Sentiment()	throws	IOException	{

								parseResource(IMDB_RESOURCE);	//	1000	sentences

								parseResource(YELP_RESOURCE);	//	1000	sentences

								parseResource(AMZN_RESOURCE);	//	1000	sentences

				}

				public	List<Integer>	getSentiments(DataSource	dataSource)	{

								int	fromIndex	=	0;	//	inclusive

								int	toIndex	=	3000;	//	exclusive

								switch(dataSource)	{

												case	IMDB:

																fromIndex	=	0;

																toIndex	=	1000;

																break;

												case	YELP:

																fromIndex	=	1000;

																toIndex	=	2000;

																break;

												case	AMZN:

																fromIndex	=	2000;

																toIndex	=	3000;

																break;

								}

								return	sentiments.subList(fromIndex,	toIndex);

				}

				

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences


				public	List<String>	getDocuments(DataSource	dataSource)	{

								int	fromIndex	=	0;	//	inclusive

								int	toIndex	=	3000;	//	exclusive

								switch(dataSource)	{

												case	IMDB:

																fromIndex	=	0;

																toIndex	=	1000;

																break;

												case	YELP:

																fromIndex	=	1000;

																toIndex	=	2000;

																break;

												case	AMZN:

																fromIndex	=	2000;

																toIndex	=	3000;

																break;

								}

								return	documents.subList(fromIndex,	toIndex);

				}

				

				public	List<Integer>	getSentiments()	{

								return	sentiments;

				}

				public	List<String>	getDocuments()	{

								return	documents;

				}

				

				private	void	parseResource(String	resource)	throws	IOException	{

								try(InputStream	inputStream	=	getClass().getResourceAsStream(resource))	{

												BufferedReader	br	=	

																new	BufferedReader(new	InputStreamReader(inputStream));

												String	line;

												while	((line	=	br.readLine())	!=	null)	{

																String[]	splitLine	=	line.split("\t");

																//	both	yelp	and	amzn	have	many	sentences	with	no	label

																if	(splitLine.length	>	1)	{

																				documents.add(splitLine[0]);

																				sentiments.add(Integer.parseInt(splitLine[1]));

																}

												}

								}

				}

}



Gaussian	Mixtures
Generate	a	mixture	of	multivariate	normal	distributions	data:

public	class	MultiNormalMixtureDataset	{

				int	dimension;

				List<Pair<Double,	MultivariateNormalDistribution>>	mixture;

				MixtureMultivariateNormalDistribution	mixtureDistribution;

				public	MultiNormalMixtureDataset(int	dimension)	{

								this.dimension	=	dimension;

								mixture	=	new	ArrayList<>();

				}

				public	MixtureMultivariateNormalDistribution	getMixtureDistribution()	{

								return	mixtureDistribution;

				}

				public	void	createRandomMixtureModel(

				int	numComponents,	double	boxSize,	long	seed)	{

								Random	rnd	=	new	Random(seed);

								double	limit	=	boxSize	/	dimension;

								UniformRealDistribution	dist	=	

												new	UniformRealDistribution(-limit,	limit);

								UniformRealDistribution	disC	=	new	UniformRealDistribution(-1,	1);

								dist.reseedRandomGenerator(seed);

								disC.reseedRandomGenerator(seed);

								for	(int	i	=	0;	i	<	numComponents;	i++)	{

												double	alpha	=	rnd.nextDouble();

												double[]	means	=	dist.sample(dimension);

												double[][]	cov	=	getRandomCovariance(disC);

												MultivariateNormalDistribution	multiNorm	=	

												new	MultivariateNormalDistribution(means,	cov);

												addMultinormalDistributionToModel(alpha,	multiNorm);

								}

								mixtureDistribution	=	new	MixtureMultivariateNormalDistribution(mixture);

								mixtureDistribution.reseedRandomGenerator(seed);	

								//	calls	to	sample()	will	return	same	results

				}

				

				/**

					*	NOTE	this	is	for	adding	both	internal	and	external,	known	distros	but

					*	need	to	figure	out	clean	way	to	add	the	mixture	to	mixtureDistribution!!!

					*	@param	alpha

					*	@param	dist	

					*/

				public	void	addMultinormalDistributionToModel(

				double	alpha,	MultivariateNormalDistribution	dist)	{

								//	note	all	alpha	will	be	L1	normed

								mixture.add(new	Pair(alpha,	dist));

				}

				

				public	double[][]	getSimulatedData(int	size)	{

								return	mixtureDistribution.sample(size);

				}

				

				private	double[]	getRandomMean(int	dimension,	double	boxSize,	long	seed)	{



								double	limit	=	boxSize	/	dimension;	

								UniformRealDistribution	dist	=	

												new	UniformRealDistribution(-limit,	limit);

								dist.reseedRandomGenerator(seed);

								return	dist.sample(dimension);

				}

				

				private	double[][]	getRandomCovariance(AbstractRealDistribution	dist)	{

								double[][]	data	=	new	double[2*dimension][dimension];

								double	determinant	=	0.0;

								Covariance	cov	=	new	Covariance();

								while(Math.abs(determinant)	==	0)	{

												for	(int	i	=	0;	i	<	data.length;	i++)	{

																data[i]	=	dist.sample(dimension);

												}

												//	check	if	cov	matrix	is	singular	...	if	so,	keep	going

												cov	=	new	Covariance(data);

												determinant	=	new	CholeskyDecomposition(

												cov.getCovarianceMatrix()).getDeterminant();

								}

								return	cov.getCovarianceMatrix().getData();

				}

				

}



Iris
Iris	is	the	famous	dataset	containing	measurements	of	irises	and	three

types:

package	com.datascience.javabook.datasets;

import	java.io.BufferedReader;

import	java.io.FileReader;

import	java.io.IOException;

import	java.util.ArrayList;

import	java.util.List;

	

/**

	*	Sentiment-labeled	sentences

	*	https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

	*	@author	mbrzusto

	*/

public	class	IMDB	{

				private	final	List<String>	documents	=	new	ArrayList<>();

				private	final	List<Integer>	sentiments	=	new	ArrayList<>();

				private	static	final	String	FILEPATH	=	"datasets/imdb/imdb_labelled.txt";

				public	IMDB()	throws	IOException	{

								ClassLoader	classLoader	=	getClass().getClassLoader();

								String	filename	=	classLoader.getResource(FILEPATH).getFile();

								try(BufferedReader	br	=	new	BufferedReader(new	FileReader(filename)))	{

												String	line;

												while	((line	=	br.readLine())	!=	null)	{

																String[]	splitLine	=	line.split("\t");

																documents.add(splitLine[0]);

																sentiments.add(Integer.parseInt(splitLine[1]));

												}

								}

				}

				public	List<Integer>	getSentiments()	{

								return	sentiments;

				}

				public	List<String>	getDocuments()	{

								return	documents;

				}

}



MNIST
The	Modified	National	Institute	of	Standards	(MNIST)	database

is	the	famous	handwritten	digits	dataset	of	70,000	images	of

digits	0	through	9.	Of	these,	60,000	are	in	a	training	set,	and	10,000	are

in	a	test	set.	The	first	5,000	are	good,	and	the	last	5,000	are	hard	to

read.	All	data	is	labeled.

All	the	integers	in	the	files	are	stored	in	the	MSB	(Most

Significant	Bit)	first	(high	endian)	format	used	by	most	non-Intel

processors.	Users	of	Intel	processors	and	other	low-endian	machines	must

flip	the	bytes	of	the	header.

There	are	four	files:
train-images-idx3-ubyte:	training	set
images

train-labels-idx1-ubyte:	training	set
labels

t10k-images-idx3-ubyte:	test	set
images

t10k-labels-idx1-ubyte:	test	set
labels

The	training	set	contains	60,000	examples,	and	the	test	set	10,000

examples.	The	first	5,000	examples	of	the	test	set	are	taken	from	the

original	MNIST	training	set.	The	last	5,000	are	taken	from	the	original

MNIST	test	set.	The	first	5,000	are	cleaner	and	easier	to	read	than	the

last	5,000.

public	class	MNIST	{

				

				public	RealMatrix	trainingData;

				public	RealMatrix	trainingLabels;

				public	RealMatrix	testingData;

				public	RealMatrix	testingLabels;

				public	MNIST()	throws	IOException	{

								trainingData	=	new	BlockRealMatrix(60000,	784);	//	image	to	vector

								trainingLabels	=	new	BlockRealMatrix(60000,	10);	//	the	one	hot	label

								testingData	=	new	BlockRealMatrix(10000,	784);	//	image	to	vector

								testingLabels	=	new	BlockRealMatrix(10000,	10);	//	the	one	hot	label

								loadData();



				}

				

				private	void	loadData()	throws	IOException	{

								ClassLoader	classLoader	=	getClass().getClassLoader();

								loadTrainingData(classLoader.getResource(

								"datasets/mnist/train-images-idx3-ubyte").getFile());

								loadTrainingLabels(classLoader.getResource(

								"datasets/mnist/train-labels-idx1-ubyte").getFile());

								loadTestingData(classLoader.getResource(

								"datasets/mnist/t10k-images-idx3-ubyte").getFile());

								loadTestingLabels(classLoader.getResource(

								"datasets/mnist/t10k-labels-idx1-ubyte").getFile());

				}

				

				private	void	loadTrainingData(String	filename)	

				throws	FileNotFoundException,	IOException	{

								try	(DataInputStream	di	=	new	DataInputStream(	

								new	BufferedInputStream(new	FileInputStream(filename))))	{

												int	magicNumber	=	di.readInt();	//2051

												int	numImages	=	di.readInt();	//	60000

												int	numRows	=	di.readInt();	//	28

												int	numCols	=	di.readInt();	//	28

												for	(int	i	=	0;	i	<	numImages;	i++)	{

																for	(int	j	=	0;	j	<	784;	j++)	{

																				//	values	are	0	to	255,	so	normalize

																				trainingData.setEntry(i,	j,	di.readUnsignedByte()	/	255.0);

																}

												}

								}

				}

				

				private	void	loadTestingData(String	filename)	

				throws	FileNotFoundException,	IOException	{

								try	(DataInputStream	di	=	new	DataInputStream(	

								new	BufferedInputStream(new	FileInputStream(filename))))	{

												int	magicNumber	=	di.readInt();	//2051

												int	numImages	=	di.readInt();	//	10000

												int	numRows	=	di.readInt();	//	28

												int	numCols	=	di.readInt();	//	28

												for	(int	i	=	0;	i	<	numImages;	i++)	{

																for	(int	j	=	0;	j	<	784;	j++)	{

																				//	values	are	0	to	255,	so	normalize

																				testingData.setEntry(i,	j,	di.readUnsignedByte()	/	255.0);

																}

												}

								}	

				}

				

				private	void	loadTrainingLabels(String	filename)	

				throws	FileNotFoundException,	IOException	{

								try	(DataInputStream	di	=	new	DataInputStream(	

								new	BufferedInputStream(new	FileInputStream(filename))))	{

												int	magicNumber	=	di.readInt();	//2049

												int	numImages	=	di.readInt();	//	60000

												for	(int	i	=	0;	i	<	numImages;	i++)	{

																//	one-hot-encoding,	column	of	0-9	is	given	one	all	else	0



																trainingLabels.setEntry(i,	di.readUnsignedByte(),	1.0);

												}

								}	

				}

				

				private	void	loadTestingLabels(String	filename)	

				throws	FileNotFoundException,	IOException	{

								try	(DataInputStream	di	=	new	DataInputStream(	

								new	BufferedInputStream(new	FileInputStream(filename))))	{

												int	magicNumber	=	di.readInt();	//2049

												int	numImages	=	di.readInt();	//	10000

												for	(int	i	=	0;	i	<	numImages;	i++)	{

																//	one-hot-encoding,	column	of	0-9	is	given	one	all	else	0

																testingLabels.setEntry(i,	di.readUnsignedByte(),	1.0);

												}

								}	

				}

				

}
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